
Hic Sunt NATs: Uncovering Address Translation
with a Smart Traceroute

Raffaele Zullo†, Antonio Pescapé†, Korian Edeline‡, Benoit Donnet‡
†Università di Napoli Federico II, Italy - r.zullo@studenti.unina.it, pescape@unina.it

‡Montefiore Institute, Université de Liège, Belgium - firstname.name@ulg.ac.be

Abstract—Middleboxes are pervasive in today’s Internet as
they are deployed for an increasing number of reasons. An
example is the network address translation (NAT), one of the first
task to be performed to cope with the lack of IPv4 addresses.
Recently the landscape for NATs has become even more crowded,
especially in mobile networks, mainly due to the impossibility of
IPv6 to be a large-scale solution to addressing issues.
In this paper, we present a novel methodology for detecting
NATs embodied in Mobile Tracebox, a measurement tool for
Android smart devices that detects a wide range of middle-
boxes. It analyzes ICMP time-exceeded messages received
during traceroute and points at IP and transport checksum
inconsistencies in the embedded packets to uncover address
translation along a path. We deployed Mobile Tracebox through
a crowdsourcing approach and used the collected dataset to
validate our methodology. Results showed that, in absence of
middleboxes breaking traceroute, it can help to detect and
locate NATs in the majority of the cases.

I. INTRODUCTION

The infrastructure use in the Internet’s early days has
radically evolved with the end-to-end principle making way
to the presence of a variety of middleboxes along a path.
Middlebox is a self-explanatory word for “an intermediary box
performing functions apart from normal, standard functions of
an IP router on the data path between a source host and a
destination host” [1]. The term was coined in 1999 by Lixia
Zhang but the concept of middlebox itself is even older: first
examples of Network Address Translation (NAT) date back to
1994 [2] while first packet filters to late 1980s. The last years
have witnessed an increase in middlebox usage [3], remarkably
in mobile networks [4], [5], embracing a broadening range
of functions (dealing with limited resources, improving per-
formance, securing hosts, etc.). Unfortunately all these tasks
come at the cost of a brake in protocols evolvability. Moreover,
in some circumstances, middleboxes impoverish performance
and alter end-to-end communications.

IP Address (and transport port) translation performed by
NAT (NAPT) is among the first applications of middle-
boxes due to progressive IPv4 addresses depletion [6]. IPv6
should be the definitive solution but its adoption is still in
its infancy [7]. In response to these delays, the picture of
NATs deployment has gotten even more complicated with the
possibility of multiple address translation at different stages
(home network, provider’s network) and all the complications
that a multi-level sharing of an IP address can carry [8].

Recent papers have shed light on middleboxes, and notably
NAT, deployment and their consequences. D’Acunto et al. [9]

analyzed P2P applications and found that 88% of the partici-
pants in the studied P2P network were behind NATs. Sherry
et al. [3] obtained configurations from 57 enterprise networks
and revealed that they can contain as many middleboxes
as routers. Wang et al. [4] surveyed 107 cellular networks
and found that 82 of them used NATs. In parallel to the
rise of middleboxes, a new practice for collecting network
data appeared: crowdsourcing [10], [11]. Although it is a
relatively new term [12], it refers to an approach already
used in the past [13] and as “collaboration model enabled
by people-centric web technologies” [14] it owes its success
in the last years to the widespread availability of mobile
devices and wireless Internet. Mobile-crowdsourcing approach
where “mobile devices are used for data-collection tasks
delegated to a larger number of people” [15] responds also
to the necessity of the Internet measuring itself [16], [17]:
probing networks from the user’s point of view can lead to
more effective measurements than running tests from fixed
observation points. Beyond affecting performance, security
and protocols evolvability, middleboxes also leave traces that
allow us to reveal them. Unfortunately, although NATs are
among the boxes most affecting end-to-end communications,
they are usually transparent to network measurements: while
using a controlled server can easily detect the presence of a
NAT, measurement techniques based on traceroute and,
more generally, techniques that require control on one end of
the path fail to detect NATs.

In this paper, we present a novel methodology to
deal with this limitation based on the analysis of ICMP
time-exceeded messages generated by routers during
traceroute, looking for inconsistencies in IP and trans-
port checksums of embedded packets. We implemented this
methodology in Mobile Tracebox [18], a measurement tool
for Android smart devices belonging to the tracebox
family [19], along with other techniques and procedures to
detect different classes of middleboxes and cope with the
innate limitations of mobile devices. We propose, validate, and
evaluate Mobile Tracebox specifically with respect to NATs
detection conducted through smart traceroute probes.

The remainder of this paper is organized as follows: Sec. II
describes how Mobile Tracebox works; Sec. III introduces our
methodology for detecting NATs; Sec. IV analyzes crowd-
sourced dataset to outline the extent of the methodology;
Sec. V positions Mobile Tracebox regarding the state of the
art; finally, Sec. VI concludes and discusses further work.



External server

External server

Backend server

Tracebox server

put probes (XML)

instructions

probe

results

probe

probe

Android app

External server

Backend server

Fig. 1. General overview of the Mobile Tracebox architecture.

II. MOBILE TRACEBOX

Methods to detect middleboxes are diverse and usually
involve active measurements. Detection through passive mea-
surement is also possible [20] but, as middleboxes are usually
designed to be transparent, methods often resort to active prob-
ing to force the box to reveal its presence. Mobile Tracebox
relies on an active measurement paradigm by sending specially
crafted packets and retrieving them after modifications occur.
There are two main methods implemented in our tool to
highlight middleboxes along a path: the first is based on the
traceroute mechanism (i.e., tracebox [19]), demanding
control of a single endpoint (the mobile device, indeed – see
Sec. II-A and Sec. II-B), the second method requires the
presence of a a controlled server that cooperates with the
device (Sec. II-C). The general overview of Mobile Tracebox
is illustrated in Fig. 1. Both methods infer middleboxes from
modifications explicitly observed on the packets. The main
difference between the two methods is how the potentially
altered copy of the sent packet is captured: à la traceroute
method relies on ICMP time-exceeded messages quoting
the expired packet, while the server-based method takes ad-
vantage of a controlled server to retrieve the packet exactly
as it is received. Both methods have their pros and cons.
The first method can detect and locate middleboxes but is
prone to middleboxes breaking tracebox (e.g., proxies or
firewalls affecting ICMP traffic). On the contrary, the server-
based method embraces TCP-terminating proxies but fails at
locating and can highlight only the last modification on every
field, if multiple modifications occur. The latter method is also
limited to specific paths as the two ends must be under control,
while tracebox can be performed to any destination. Our
work relies on tracebox to detect NATs and make use of
server-based probes for validation.

A. Standard tracebox

The first method is perfectly embodied by tracebox [19],
an extension to the widely used traceroute. tracebox
borrows traceroute incremental approach, sending packets
with increasing TTL and receiving ICMP time-exceeded
replies from routers. While traceroute just takes note of
the sent packet’s TTL and the source address of ICMP reply
to draw a path in terms of hops from source to destination,
tracebox goes deeper extracting the original packet data
inside the ICMP message and comparing it to the packet that

a) TTL=2 b) TTL=1

c) ICMP Time Exceeded + 
quoted packet b)

IP 
TTL=2

TCP 
SYN

IP 
TTL=1

TCP 
SYN

IP ICMP
11 – 0

IP 
TTL=1

TCP 
SYN

a) b) c)

Quoted packet

Compare packets

Fig. 2. Middlebox detection and localization with tracebox.

has been sent. This lets tracebox highlight which modifications
were possibly performed on the packet (middleboxes detec-
tion) and between which hops they took place (middlebox
location). This technique is made possible by RFC792 [21]
and RFC1812 [22] stating that ICMP time-exceeded
replies should encapsulate the full IP header plus respectively
the first 8 bytes of IP payload or the full IP payload of the
packet whose TTL has expired in transit.

In Fig. 2 between the source performing tracebox and
the second hop lies a middlebox altering TCP Initial Sequence
Number (ISN): it receives the original packet sent (a) and
forwards the altered packet (b) to the next hop; as the TTL
expires an ICMP message (c) is returned containing b as
payload. By comparing b to a, tracebox will show a TCP
Sequence Number modification observed at hop 2 allowing
the user to detect and locate the middlebox.

B. Smart Devices

A proof of concept version of tracebox for mobile
devices has been developed by Thirion et al. [23] as Trace-
boxAndroid. It included a porting of classic tracebox mode
to Android (core) in conjunction with a GUI for users to
perform and review probes (frontend) and a backend server
to collect data. In the new version, more pretentiously named
Mobile Tracebox, we tried to deal with the limitations of the
first version: we extended the support to all Android platforms
(arm, x86, mips, both 32 and 64 bit architectures), enhanced
the core to handle all possible TCP and UDP probes over
IPv4 or IPv6 and provided full customization capabilities for
every single field or parameter of the probe. With server-
based mode we also extended operations to non-rooted de-
vices but, as this methodology is based on traceroute
and access to content of ICMP time-exceeded messages
requires CAP_NET_RAW POSIX capability, the audience of
this work is still restricted to rooted Android devices. Core
has undergone the most of the changes as it is the key section
of the app. Further, we opted for a more functional and
user-friendly frontend, and extended backend to match new
requirements and to support a preliminary screening of data
as soon as they were collected. We completed the architecture
with a tracebox server (further detailed below) as shown in
Fig. 1 to include server-based probing and to cope with lack of
privileges of most mobile devices. Probes are sent in two ways:
(i) the user selects a destination and runs the probe (instant
probing) and (ii) a scheduled task executed in background is
responsible for probing the network (background probing), if
the user has enabled this feature.



We adopted some further refinements with respect to stan-
dard tracebox. Our core keeps record of the modifications
observed: if a certain modification is detected at hop i it will
be listed at a hop > i only if the field changes again from
last value observed. This output is more friendly for the user
allowing him to better locate where modifications actually
occur. Obviously this carries the assumption that packets with
increasing TTL are flowing through the same path, or at least
are undergoing the same modifications along different paths
(including load balancing), which is not unreasonable.

A special treatment is given to IPv4 TTL (as well as to IPv6
Hop Limit) and Checksum: modifications of those fields that
are entirely in line with routing (i.e., decreasing TTL by one
and updating IPv4 Checksum accordingly) are not shown in
Mobile Tracebox since they are not related to middleboxes.
This allows our tool to better highlight subtle boxes interfer-
ence, e.g., expired packets with TTL higher than 1 (even 4,
5) or packets with IP Checksum altered not accordingly to
other modifications, that should have passed unnoticed in a
sea of other legitimate TTL/Checksum modifications. Another
special treatment is given to TCP and UDP Checksums along
with already quoted IPv4 Checksum. Mobile Tracebox doubles
the markers for Checksum fields: one is just the value of the
field, the other is the value returned after checking the integrity
of the packet (it is supposed to be zero). In the remainder of
this paper, we will see that it is not infrequent to receive ICMP
messages carrying quoted packets with wrong IP, TCP, UDP
Checksum and we will give the offset from correct Checksum
a specific meaning.

C. Server-Based tracebox

Not all middlebox interferences are brought to light by the
tracebox method. As well as modifications can occur on
outbound packet, there is nothing to prevent other modifica-
tions on the incoming packet – even if carried inside of ICMP
enclosure. Boxes that change some fields on the way out can
restore – in whole or in part – those fields to the original
values making themselves completely transparent to standard
tracebox test. A server-based approach will not fail in this
scenario since controlling the server gives us access to the
packet in the exact shape as it is received at the destination.
Mobile Tracebox includes a server-based mode and can also
combine the two modes: the packet is sent to the server in
a traceroute fashion in order to show how middleboxes
interference appears from both perspectives. We will take
advantage of this mode in Sec. III-A.

III. DETECTING NATS

Standard tracebox methodology is able to detect a wide
spectrum of modifications performed by middleboxes. Unfor-
tunately modifications on source address and port – indeed
those performed by NAT – are not among them. The reason
is given in RFC 5508 [24], stating NAT best current practice
with respect to ICMP Error Packet Translation. When a NAT
device receives an ICMP Error packet from the external realm,
if the NAT has an active mapping for the embedded payload,

RFC5508 prescribes the NAT to do the following prior to
forwarding the packet:

1) Revert the IP and Transport headers of the embedded
IP packet to their original form, using the matching
mapping;

2) Leave the ICMP Error type and code unchanged;
3) Modify the destination IP address of the outer IP header

to be same as the source IP address of the embedded
packet after translation.

Point 3 is needed for the host whose packet has expired in tran-
sit to receive the ICMP error message while Point 1 is needed
for the same host to understand which connection (in other
words which socket) the error is related to. This means that
the NATted address and port of the quoted packet – inside the
ICMP message – are restored to the original values making the
NAT transparent. To leave no stone unturned, we used at first
an experimental version of Mobile Tracebox where the core
was set to receive any incoming ICMP time-exceeded
message. In this way, tracebox was able to detect any
modification on packets, including source address and port
if not properly restored by NAT but, unfortunately, it was not
of any help, resulting only in a large amount of inconclusive
probes.

After this preliminary survey, we set the tracebox core
to correctly retrieve only ICMP packets where the embedded
packet matches sent packet 5-tuple (source address, destination
address, source port, destination port, transport protocol), and
we switched to a smarter methodology. Middleboxes changing
a specific 3rd or 4th layer field do not operate solely on that
field. For instance, a box modifying IP DSCP has to update
IP checksum since the IP header has been changed. NATs,
besides source address and port, have to update both IP and
TCP/UDP checksum: even if the NAT does not alter port,
transport checksum has to be updated since IP source address
is part of the pseudoheader. We have explained earlier how
NATs restore the initial values of source address and port,
the next question is: are they restoring also IP and transport
checksum? Looking back to RFC5508 [24], it states that NAT
should “revert the IP and transport headers of the embedded
IP packet to their original form”, thus including checksums
even if not explicitly asserted. On the other hand, a first
deployment of Mobile Tracebox showed evidence of ICMP
messages carrying an embedded packet with wrong IP or
transport checksum, especially the latter. There is a good
reason for tolerating wrong transport checksum inside ICMPv4
messages and it is related to quoting mechanism: although
RFC1812 [22] recommends to include as much as possible of
the original packet, the previous RFC792 [21] recommended
only 8 bytes of Layer-4 data to be included and, in most
cases, only a part of the transport data is reported: in this
cases the checksum is, of necessity, inconsistent. RFC5508
suggests incorrect IP and transport checksums to be treated
differently: IP checksum should be validated and a packet
with wrong IP checksum should be dumped while transport
checksum should not be validated. While analyzing data as



TABLE I
CHECKSUM ERROR COHERENCE WITH ADDRESS/PORT OFFSET.

Address+Port Address only None All
IP -- 2 5 7
TCP 7 2 3 12
UDP 3 5 3 12

they were collected from users (see Sec. IV-B for details about
data collection), we realized that about 5% of routers crossed
by tracebox showed checksum inconsistencies in Layer-4
checksum and about 1% in IP checksum. The reasons behind
these errors can be diverse: from malfunctioning in forwarding
packets to any mix of modifications occurring on downstream
and upstream that do not compute the checksum accordingly.
Mobile Tracebox abstains from evaluating transport checksum
when the entire packet is not available, thus partial quoting can
be excluded as a cause for detected checksum inconsistencies.
Inspecting those errors, we saw evidence that they can be
related to NATs:

• errors appear at some hop and persist after that hop until
the destination;

• for repeated probes, errors always show up at the same
hop (even with different values);

• packets within a single connection show the same offset,
for instance TCP SYN and the following ACK packet,
although having different sent and received transport
checksums, turn out to have the same offset from the
respective correct values;

• packets belonging to different connections show the same
IP checksum offset.

All these observations are compatible with NATs.

A. Validation

To further validate correlation between checksum errors and
NATs, we resort to tracebox and server-based probes. We
analyzed probes from 22 networks, both cellular and Wi-Fi,
and checked for coherence between IP and transport checksum
errors detected through tracebox and modifications on
source address and port detected at the server.

Results presented in Table I show how checksum errors
can be linked to NATs. In these cases, the error detected
via tracebox matches exactly the address (and port) trans-
lation offset. Surprisingly, a few transport checksum errors
(especially for UDP) match only the offset between private
address and NATted address, even when the probe to our server
confirmed the presence of a NAPT. IP checksum errors can
only match addresses offset because IP checksum does not
include port information. In Fig. 3 a typical scenario where our
methodology works is shown. The NAT is translating a client’s
private address and port and updating the transport checksum
on the client’s outgoing packet. The packet is received at the
server with the fields Addr2, Port2, Checksum2. When
an incoming ICMP time-exceeded message reaches the
NAT, it restores Addr1 and Port1 in the embedded packet
but does not update the checksum: the packet retrieved through

Addr1
Port1
CS1

Addr1
Port1
CS1

Addr2
Port2
CS2

Addr2
Port2
CS2

ICMP
Addr2
Port2
CS2

ICMP
Addr1
Port1
CS2

ICMP
Addr1
Port1
CS2

Fig. 3. Detecting NATs through checksum errors.

traceroute has the fields Addr1, Port1, Checksum2.
The client then computes the offset between Checksum1 and
Checksum2.

Errors that do not match NAT offsets can be due to other
middeboxes modifications that are performed by upstream and
restored downstream (without restoring checksum) but we did
not find evidence of correlation with other fields alterations
detected at the server. They can be still related to NAT in
a more subtle way and must be further investigated. Two
networks showed at the same hop a transport checksum error
matching the offset and an IP checksum error not matching
the offset: we cannot exclude that even the IP checksum error
is due to NAT. We must clarify that the test above should not
succeed when there is more than one NAT and only one is not
updating checksums. In this case, the error is related to one
NAT while the offset is due to multiple address translations.
We had physical access to one of the networks that showed
no coherence between checksum error and address/port offset
and verified that it had a double level of NAT.

IV. DEPLOYMENT

A. Dataset

In Sec. III we used a small number of networks to show
that checksum errors in ICMP embedded packet can be linked
to NATs. Now we analyze the dataset collected through
crowdsourcing to outline the extent of this methodology. We
started from all probes executed in traceroute mode by
124 users and collected from February 2016 to February
2017 and performed a sanitization. We eliminated probes that
presented errors or inconsistencies in the output, probes where
it was not possible to retrieve information about the network
through Android APIs, probes exhibiting a network switch
(cellular to Wi-Fi or vice versa) during the execution. With
regard to IP checksum, we excluded all errors matching the
pattern 0x0*00: these turned out to be quite frequent but are
more probably due to a mismatch between checksum and TTL
than related to NATs. The sanitized dataset includes about
8,000 probes belonging to 40 cellular networks and 72 Wi-Fi
networks.

B. Results

We show now results of the analysis of IPv4 probes. We
will analyze IPv6 probes in the last part of this section.



IP TCP UDP
Protocol

0

5

10

15

20

25

P
ro

be
s

(%
)

Cellular
WiFi
Both

Fig. 4. Checksum errors raw percent on probes.

Fig. 4 displays how many probes are showing IP and transport
checksum errors: a significant portion of paths presents TCP
or UDP checksum errors. IP checksum errors are less frequent
as NATs are probably less negligent in manipulating IP header
of embedded packets.

Results in Fig. 4 can underestimate the extent of this
methodology as they are based on the entirety of probes:
not all probes in fact are supposed to exhibit that previous
behavior. To gain a better perspective we have to refine the
dataset with respect to three features: the address owned
by the host, the presence of other middleboxes that break
traceroute, and the partial embedding of Layer-4 data in
ICMP error messages. First of all, we have to differentiate
probes in which a host has a private address and probes in
which the host has a public address: while in the first case the
presence of NAT is implied, in the second instead it is quite
unlikely. Then, we have to exclude the probes where other
middleboxes break traceroute. Due to the presence of a
proxy or a firewall blocking ICMP messages many probes
exhibits no or just a few intermediate hops: as we linked
errors to NAT, a probe should show in the path at least one
router with a public address, thus residing outside the private
network. Another consideration concerns the amount of Layer-
4 data encapsulated in ICMP messages. Although RFC1812
recommends to quote the entire packets, many IPv4 routers
quote only the first 8 bytes of transport layer, as originally
required by RFC792: Mobile Tracebox cannot validate a
Layer-4 checksum if the packet is not available in its entirety.
This leads us to restrict the eligible probes to: probes with
at least a public address router with regard to IP checksum,
probes with at least a public address router quoting the full
original packet with regard to transport checksum. Fig. 5
displays the refined statistics for checksum errors. It shows
how, under the circumstances discussed before, the majority
of probes that are supposed to cross a NAT in traceroute
path show checksum inconsistencies.

We excluded probes where the host has a public IP ad-
dress from last statistics. We analyzed separately 320 probes
collected from 8 networks but did not find any evidence of
checksum errors. This is not surprising: even if still possible,
the presence of a NAT is quite unlikely in those cases.

All the statistics provided till now are based only on IPv4
probes. We explored also IPv6 probes in the dataset looking

IP TCP UDP
Protocol

0

10

20

30

40

50

60

70

80

90

P
ro

be
s

(%
)

Cellular
WiFi
Both

Fig. 5. Checksum errors refined percent on probes.

for checksum errors: 160 probes belonging to 5 networks did
not show any inconsistency in transport checksum (IPv6 has
no checksum at IP layer). Again it is entirely in line with the
relation between checksum errors and address translation since
a host owning an IPv6 public address is not supposed to cross
a NAT.

We now briefly summarize some other possible uses of this
methodology: (i) Double NATs: mismatch between IP and
transport checksum errors detected along the path and address
and port translation offset detected at tracebox server can
help to corroborate the suspicion of two of more NATs;
(ii) Revealing NATted port: when transport checksum error
matches Address+Port offset, NATted port on outgoing
connections can be revealed by combining private port, trans-
port checksum error and offset between private address and
NATted address (as discovered through tracebox server or
similarly through a STUN [25] server); (iii) NAT properties:
in the same scenario as before, transport checksum errors on
different connections can help to outline some NAT properties,
e.g., if it is symmetric or not; (iv) Other methodologies:
our technique can be integrated with other methodologies to
improve NAT detection.

V. RELATED WORK

traceroute, despite its well-known limitations [26], has
been used for revealing IP interfaces along the path between
a source and a destination. It has been extended in a variety
of ways, for instance to face load balancing [27], the reverse
path [28], or detect hidden routers [29] and middleboxes [19].
In the last years, middleboxes inference has become an impor-
tant topic of interest. TCPExposure, developed by Honda et
al. [30], is close to tracebox: it resorts to specially crafted
packets to test for middlebox interference. Craven et al. [31]
proposed HICCUPS to reveal packet header manipulation to
both endpoints of a TCP connection: it works by hashing a
packet header and by spreading the resulting hash into three
fields. The Netalyzr [11] tool has provided a survey on
several features of Internet’s edge including interference by
middleboxes. Considering NATs, Wang et al. [4] deployed
net-piculet on 107 cellular networks and found that 82 of
them used NATs. Müller et al. proposed NATAnalyzer [32],
an algorithm to discover previously unknown cascaded NAT
configurations by controlling both ends of the path. More



recently, Lutu et al. introduced NAT Revelio [8] a novel test
suite and methodology for detecting NAT deployments beyond
the home gateway, also known as NAT444. All these tools
provide great results but none of them provides a methodology
to detect address translation along a traceroute path to any
destination.

VI. CONCLUSIONS AND FUTURE WORKS

NAT detection along a path can be complicated when both
ends are not under control as this kind of middlebox can be
completely transparent to certain measurements, specifically
those based on traceroute. We addressed this issue with a
new methodology that detects address translation from check-
sum inconsistencies found in embedded packets inside ICMP
time-exceeded messages received during traceroute.
We implemented the methodology in Mobile Tracebox, a
tracebox extension for Android devices. Based on data
collected through crowdsourcing from 40 cellular networks
and 72 Wi-Fi networks from all around the world we showed
the extent of the new technique. Results demonstrate that,
when no other middleboxes (e.g., proxies, firewall blocking
ICMP, etc) are obstructing traceroute, it can detect and
locate NATs in the majority of cases. Finally we have briefly
summarized some other possible uses of this methodology.

A larger scale deployment, including also wired networks,
would be of help to outline more clearly the extent and
possible usage of this methodology.

ACKNOWLEDGMENTS

The research described in this paper has been partially funded by
the European Union’s Horizon 2020 research and innovation program
under grant agreement No 688421. The opinions expressed and
arguments employed reflect only the authors’ views. The European
Commission is not responsible for any use that may be made of
that information. The work of Antonio Pescapé has been partially
supported by the art. 11 DM 593/2000 for NM2 srl.

REFERENCES

[1] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and issues,” Inter-
net Engineering Task Force, RFC 3234, February 2002.

[2] K. Egevang and P. Francis, “The IP network address translator (NAT),”
Internet Engineering Task Force, RFC 1631, May 1994.

[3] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proc. ACM SIGCOMM, August 2012.

[4] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang, “An untold story of
middleboxes in cellular networks,” in Proc. ACM SIGCOMM, August
2011.

[5] A. Botta and A. Pescapé, “Monitoring and measuring wireless network
performance in the presence of middleboxes,” in Wireless On-Demand
Network Systems and Services (WONS), 2011 Eighth International
Conference on. IEEE, 2011, pp. 146–149.

[6] G. Huston, “IPv4 address report,” April 2017, https://ipv4.potaroo.net.
[7] J. Czyz, M. Allman, J. Zhang, S. Iekel-Johnson, E. Osterweil, and

M. Bailey, “Measuring IPv6 adoption,” in Proc. ACM SIGCOMM,
August 2014.

[8] A. Lutu, M. Bagnulo, A. Dhamdhere, and k. claffy, “NAT revelio:
Detecting NAT444 in the ISP,” in Proc. Passive and Active Measurement
Conference (PAM), March 2016.

[9] L. D’Acunto, N. Chiluka, T. Vinò, and H. J. Sips, “Bittorrent-like
P2P approaches for VoD: a comparative study,” Computer Networks
(COMNET), vol. 57, no. 5, pp. 1253–1276, April 2013.

[10] A. Faggiani, E. Gregori, L. Lenzini, S. Mainardi, and A. Vecchio, “On
the feasibility of measurement the Internet through smartphone-based
crowdsourcing,” in Proc. IEEE International Symposium on Modeling
and Optimization in Mobile, Ad-Hoc and Wireless Networks, May 2012.

[11] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: Il-
luminating the edge network,” in Proc. ACM Internet Measurement
Conference (IMC), 2010.

[12] J. Howe, “The rise of crowdsourcing,” Wired Magazine, vol. 14, no. 06,
pp. 2–6, June 2006.

[13] A. Tarrell, N. Tahmasbi, D. Kocsis, A. Tripathi, J. Pedersen, J. Xiong,
O. Oh, and G.-J. de Vreede, “Crowdsourcing: A snapshot of published
research,” in Proc. Conference on Information Systems, August 2013.

[14] J. Pedersen, D. Kocsis, A. Tripathi, A. Tarrell, A. Weerakoon, N. Tah-
masbi, J. Xiong, W. Deng, O. Oh, and G.-J. de Vreede, “Conceptual
foundations of crowdsourcing: A review of IS research,” in Proc. 46th
Hawaii International Conference on System Sciences, January 2013.

[15] F. Fuchs-Kittowski and D. Faust, “Architecture of mobile crowdsourcing
systems,” in Proc. 20th International Conference on Collaboration
Technology (CRWIG), September 2014.

[16] Y. Shavitt and E. Shir, “DIMES: Let the internet measure itself,” ACM
SIGCOMM Computer Communication Review, vol. 35, no. 5, pp. 71–74,
October 2005, see http://www.netdimes.org.

[17] M. Molinari, M.-R. Fida, M. K. Marina, and A. Pescape, “Spatial
interpolation based cellular coverage prediction with crowdsourced
measurements,” in Proceedings of the 2015 ACM SIGCOMM Workshop
on Crowdsourcing and Crowdsharing of Big (Internet) Data. ACM,
2015, pp. 33–38.

[18] R. Zullo, K. Edeline, A. Pescapé, and B. Donnet, “Mobile tracebox,”
2016. [Online]. Available: http://play.google.com/store/apps/details?id=
be.ac.ulg.mobiletracebox

[19] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel, and B. Donnet,
“Revealing middlebox interference with tracebox,” in Proc. ACM Inter-
net Measurement Conference (IMC), October 2013.

[20] U. Goel, M. Steiner, M. P. Wittie, M. Flack, and S. Ludin, “Detecting
cellular middleboxes using passive measurement techniques,” in Proc.
Passive and Active Measurement Conference (PAM), March 2016.

[21] J. Postel, “Internet control message protocol,” Internet Engineering Task
Force, RFC 792, September 1981.

[22] F. Baker, “Requirements for IP version,” Internet Engineering Task
Force, RFC 1812, June 1995.

[23] V. Thirion, K. Edeline, and B. Donnet, “Tracking middleboxes in
the mobile world with traceboxandroid,” in Proc. 7th International
Workshop on Traffic Monitoring and Analysis (TMA), April 2015.

[24] P. Srisuresh, B. Ford, S. Sivakumar, and S. Guhg, “NAT behavioral
requirements for ICMP,” Internet Engineering Task Force, RFC 5508,
April 2009.

[25] P. Matthews, J. Rosenberg, D. Wing, and R. Mahy, “Session Traversal
Utilities for NAT (STUN),” RFC 5389, Oct. 2008. [Online]. Available:
https://rfc-editor.org/rfc/rfc5389.txt

[26] P. Marchetta, V. Persico, A. Pescapé, and E. Katz-Bassett, “Don’t trust
traceroute (completely),” in Proc. ACM CoNEXT Student Workshop,
December 2013.

[27] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Lat-
apy, C. Magnien, and R. Teixeira, “Avoiding traceroute anomalies
with Paris traceroute,” in Proc. ACM Internet Measurement Conference
(IMC), October 2006.

[28] E. Katz-Bassett, H. Madhyastha, V. Adhikari, C. Scott, J. Sherry, P. van
Wesep, A. Krishnamurthy, and T. Anderson, “Reverse traceroute,” in
Proc. USENIX Symposium on Networked Systems Design and Imple-
mentations (NSDI), June 2010.

[29] P. Marchetta and A. Pescapé, “DRAGO: Detecting, quantifying and
locating hidden routers in traceroute ip paths,” in Proc. IEEE Conference
on Computer Communications Workshops, April 2013.

[30] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, “Is it still possible to extend TCP,” in Proc. ACM Internet
Measurement Conference (IMC), November 2011.

[31] R. Craven, R. Beverly, and M. Allman, “Middlebox-cooperative TCP
for a non end-to-end Internet,” in Proc. ACM SIGCOMM, August 2014.

[32] A. Müller, F. Wohlfart, and G. Carle, “Analysis and topology-based
traversal of cascaded large scale NATs,” in Proc. Workshop on Hot
Topics in Middleboxes and Network Function Virtualization (HotMid-
dlebox), December 2013.


