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Disclaimer

The information, documentation and figures available in this deliverable are written by the
Measurement and Archticture for a Middleboxed Internet (MAMI) consortium partners under
EC co-financing (project H2020-ICT-688421) and does not necessarily reflect the view of the
European Commission.

The information in this document is provided “as is”, and no guarantee or warranty is
given that the information is fit for any particular purpose. The user uses the information at its
sole risk and liability.
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Executive Summary

The Measurement and Architecture for a Middleboxed Internet (MAMI) project is developing
and experimentally deploying a Middlebox Cooperation Protocol (MCP), embedded in a more
Flexible Transport Layer (FTL) to support stack evolution. To do so, large-scale measurements
of middleboxes in the public Internet conducted on top of public available testbeds including the
H2020 MONROE or other suitable FIRE+ testbeds are essential to get a good knowledge of
middlebox deployment in reality and as a basis to model middlebox behavior for testing MCP’s
applicability.

MAMI WP1 focuses on those measurements. In particular, it is developing new measurement
tools and techniques, deploying them at large scale and storing the collected measurement
data to make the taken observation publicly available.

This deliverable reports MAMI early efforts in this direction, focusing on measurement tools and
techniques development and deployment in the first year of the project. We discuss what has
been achieved so far in terms of (i) detecting path impairment caused by middleboxes and (ii)
finding these boxes in the network.
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1 Introduction

In MAMI WP1 (“Large-Scale Measurements of Deployed Middleboxes”), the project aims (among
other goals) at developing new, enhanced measurement techniques and methodologies to de-
tect and subsequently analyze middlebox behavior. The collected dataset does not only provide
the basis for the development of an architecture allowing endpoints and middleboxes to coop-
erate (i.e., WP3) and for MAMI’s further experimentation with such a protocol (i.e., WP2), it
will also foster further research on this topic outside the project: MAMI makes measurement
tools, methods, and data available to the network research and operations community at large
(see github.com/mami-project and the MAMI Path Transparency Observatory). The collected
measurement data and derived observations can be used to a) develop new and innovative
measurement techniques or enhance existing, well-established ones and b) as input for trans-
port protocol development beyond the scope of MAMI. For instance, copycat (described in
Sec. 2.1.2) is a tool for comparing loss, latency, and throughput for TCP and UDP by gener-
ating TCP-shaped traffic with UDP headers. The objectives beyond those measurements are
to assess whether one could run new transport protocols for the Internet over UDP. The in-
teresting feature of copycat is that it does not only test connectivity and feature support but
also measures Quality of Service (QoS) characteristics (throughput, loss, delay) by sending a
sufficient amount of content data. Therefore, copycat can be used as generic test tool of new
transport protocols and compare their performance to the current deployed state of the art.

The purpose of this deliverable is to report what has been achieved so far in MAMI WP1. In
particular, we describe efforts made in developing new measurement tools as well as initial
deployment and results obtained with those tools. In this deliverable, we first (Chap. 2) discuss
tools for detecting path impairment caused by middleboxes for different protocols or protocol ex-
tensions: PATHspider performing A/B testing for TCP and IP field and options, copycat testing
UDP vs. TCP performance and H2tool/EYEORG for HTTP/2 support and performance testing.
Here, a path impairment is any measurable action a middlebox performs on traffic between a
source and a destination (typically by modification of protocol bits or differential treatment for
certain kinds of protocols/protocol extension leading to degrading performance or even com-
plete blocking). Further in Chap. 2, we also describe tools for finding concrete instances of
certain middleboxes in the network and subsequently analyze their behavior: tracebox as a
generic tool for middlebox and proxy detection and NAT Revelio, especially focusing on NAT
and Carrier-Grade NAT. Afterwards we report on initial deployment and results obtained from
each those tools, mostly run as separate studies during the development phase of the tools
(Chap. 3). Finally, Chap. 4 concludes this deliverable by summarizing its main achievements
and discussing future directions of MAMI WP1 on tool development and enhancements, large-
scale and automated measurement campaigns, as well as integrate of data and combined
analysis of thereof in the Path Transparency Observatory.
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2 Techniques and Implementation

This chapter describes the measurement techniques and tools developed so far by the MAMI
project. The project development corresponds to two categories: (i) measuring path impair-
ment due to the presence of middleboxes (Sec. 2.1) and, (ii), revealing the presence of mid-
dleboxes in the network (Sec. 2.2).

In a nutshell, path impairments are detected by PATHspider, that checks Internet path trans-
parency to various protocol features, copycat, that evaluates differences in connectivity and
QoS due to differential treatment for different transport protocols, the H2tool that identifies
HTTP/2 impairments, and EYEORG, a platform for crowdsourcing web Quality of Experience
(QoE) measurements. Further, middlebox presence is revealed by two tools: tracebox, a
traceroute extension that reveals the presence of middleboxes along a path (in both mobile
and wired network), and NAT Revelio that detects the presence of Carrier Grade NATs (CGN)
deployed by network operators.

2.1 Measuring Path Impairment

2.1.1 PATHspider

PATHspider is a generalization of the earlier ECN Spider tool [26] to measure Internet path
transparency to various protocol features by answers the following questions: will an attempt to
use featureX fail, or will it cause connection impairment? Transparency to a certain feature can
be impaired at any point along the path, either when a middlebox along the path treats those
packets differently by design or accident, or when faulty server-side implementations respond
poorly to unexpected traffic.

PATHspider performs controlled A/B experiments1, comparing control traffic (usually a vanilla
TCP connection) to the target with experimental traffic (using the feature under test). It uses
integrated passive measurement of the generated test traffic to provide a network-level view
of impairments as seen at the vantage point. PATHspider runs multiple tests concurrently to
supports large-scale scanning of millions of targets within a reasonable amount of time. Further,
concurrent setup of control and experimental connections minimizes the chance that a transient
change at the target – e.g. rerouting or other reconfiguration – will affect the results.

By running PATHspider from multiple, diverse vantage points, effects close to the target can be
isolated from effects due to manipulation of packets by on-path devices where an impairment
is detected on one path but not another. PATHspider is designed to work with the MAMI Path
Transparency Observatory, to be described in detail in a future deliverable D1.2, to combine
observations from multiple vantage points, as well as to compare observations from diverse
measurement campaigns.

PATHspider provides a framework for easily writing and integrating tests for new protocol fea-
tures as plugins. The framework splits tests into multiple stages. The framework, as shown
in Fig. 1, consists of a configurator for changing system settings between the control (A) and
experimental (B) configurations, if necessary; an observer that captures and analyses traf-

1”A/B testing is a term for a randomized experiment with two variants, A and B, which are the control and variation
in the controlled experiment” [16].
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Figure 1: Block diagram illustrating control flow and flow of data between PATHspider compo-
nents.

fic traces during the tests; worker threads that synchronize with the configurator to generate
test traffic using each configuration; and a merger that combines API-level information from
the workers with passive traffic information from the observer. PATHspider plugins are imple-
mented by providing specific functions for the configurator, workers, observer, and merger.

PATHspider currently supports measurements of path transparency of Explicit Congestion No-
tification in TCP [20], TCP Fast Open [4], and Differentiated Services [18], and can probe
end-host support for various web protocols using protocol negotiation extensions to Transport
Layer Security (TLS)[8].

The ECN plugin measures both ECN negotiation, as well as connectivity issues related to ECN
negotiation attempts. The TFO plugin does the same for the TCP Fast Open option, with the
caveat that it has to use two connections for the TFO test in order to ensure a cookie has
been cached and that data can be transmitted on the initial SYN of the second connection. In
both cases, the host machine’s kernel support for the tested feature is used, instead of crafted
packet injection, so PATHspider evaluates the actual client behavior in these cases.

The DSCP plugin uses packet mangling to set an arbitrary DSCP codepoint on outgoing test
traffic, and measures the effect on the codepoint on downstream traffic. Studies to find one-way
DSCP rewriting require additional observation at a controlled target.

The TLS plugin measures transparency to the Application Layer Protocol Negotiation (ALPN)
and Next Protocol Negotiation (NPN) extensions and as a side effect, measures support for
HTTP 2 in the target webservers. This plugin is based on the same methodology as developed
for the H2tool as described in section 2.1.3.

See https://pathspider.net/ for the PATHspider codebase and documentation.
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Figure 2: copycat measurement methodology.

2.1.2 copycat

copycat2 simultaneously runs pairs of flows between two endpoints, a standard TCP flow and
another TCP flow using UDP as an “outer” transport, to evaluate differences in connectivity
and QoS due to differential treatment of different transport protocol headers. The TCP in UPD
encapsulation is used to simulate a new transport protocol that runs over UDP but provides the
same traffic characteristics, e.g. by using TCP-friendly congestion control, for comparison. The
two flows run in parallel with the same 4-tuples (port numbers and IP addresses), to obtain flows
with the most similar possible treatment from the network, but with different transport headers.
By comparing performance of these flows to each other, we are able to detect differences that
can be attributed to differential treatment by the path.

As shown in Fig. 2, the UDP flow is obtained by tunneling a TCP flow over UDP. To achieve
this, copycat first creates a tun virtual network interface that simulates a network layer device
and operates at Layer 3. In our measurement setup, each node runs both the copycat client
and the server. On the client side, the TCP client connects to its peer via the Internet-facing
interface and receives data from it, writing it to disk. The UDP client consists of the TCP client
bound to the tun interface, which is in turn bound by copycat to a UDP socket on the Internet-
facing interface. copycat thus works as a tunnel endpoint, encapsulating TCP packets from
tun in UDP headers, and decapsulating received UDP packets back to TCP packets to tun.
The server-side consists of a similar arrangement, listening for connections from clients and
sending data to them. The client waits for both transfers, via TCP and TCP- controlled UDP, to
be completed before connecting to the next destination.

Each flow consists of a unidirectional data transfer. The smallest flow is calibrated not to ex-
ceed the TCP initial window size, which ranges from 2-4 to 10 Maximum Segment Size (MSS)
depending on the kernel version used by the different measurement platforms [2, 5]. This en-
sures that for the smallest flow, we send all data segments at once. Then, we increase the
size of the flows by arbitrary factors of 3, 30, 300, and 1500 to observe the impact of differential
treatment for congestion-controlled traffic of larger flows.

To avoid unwanted fragmentation of UDP datagrams and ICMP message-too-long errors, and
2Sources are freely available at https://github.com/mami-project/udptun
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(a) Upgrade captured at client side. (b) Upgrade captured at server side after middle-
box.

Figure 3: H2tool experiment: UPGRADE and HTTP2-SETTINGS headers removed.

to ensure that packets from both tunneled and non-tunneled flows are equally sized, we de-
crease the MSS of the tunneled TCP flow by the size of the tunnel headers (IP header + UDP
header = 28 Bytes).

copycat is coded in C to minimize the tunneling overhead. I/O multiplexing is handled using
select(). During the measurement run network traces are captured at eth0 with libpcap.

2.1.3 H2tool

The H2tool3 tests a number of HTTP/2 related functionalities against a target URL. The HTTP
protocol was recently updated from version 1.1 to HTTP/2. The rationale of the change is
to overcome the limitations of a protocol that has been used for more than 15 years to carry
Internet traffic. The new version of the protocol, described in detail in RFC 7540, allows to
send the traffic both end-to-end encrypted (the version of the protocol is known as h2) and
non-encrypted (the version of the protocol is known as h2c or HTTP/2 in the clear).

In particular, the H2tool is able to test the protocol negotiation phase where HTTP/2 is selected
by using both ALPN and the older NPN mechanisms. Some sites announce HTTP/2 availability
by ALPN, but later on, when trying to switch to HTTP/2, there is no such real support. The tool
is able to detect if a page announces H2, and if it (as well as the path) really supports it. The
tool also performs measurements in the negotiation phase, such as deriving timeout based on
the ALPN duration.

In a variant of HTTP/2, called HTTP/2 in the clear (h2c), the traffic is sent directly over the TCP
connection, without the intermediate TLS version negotiation. The proposed way to start an h2c
connection is by using the UPGRADE mechanism. The sessions starts in HTTP 1.1, proposing
to upgrade to h2c and, if the server agrees, there is a protocol switch to h2c. However, the
Internet community has argued that the UPGRADE mechanism, which relies on specific HTTP
headers, could be tampered by the behaviour of middleboxes.

Due to the above, the H2tool detects interference of middleboxes in the UPGRADE mecha-
nism for h2c. Some middleboxes remove part of the header, and the connection falls back to
HTTP 1.1. In order to better explain the behaviour, Fig. 2.3(a) shows the HTTP packet with
the UPGRADE captured at the client side, before entering the network, which includes CON-
NECTION, UPGRADE and HTTP2-SETTINGS headers. Fig. 2.3(b) shows the HTTP packet

3Sources are freely available at https://github.com/mami-project/h2-measurements
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Drag the slider to scrub 
through the video until the 
page appears “ready to use.”

(a) Timeline Test. Participants “scrub” the slider to the point
where they consider the page “ready to use.”

Play the 
videos.

Select which video (“Left” 
or “Right”) loaded faster or 
choose “No Difference.”

1

2

(b) A/B Test. Participants watch side-by-side page load videos and
indicate which load is faster.

Figure 2: Eyeorg’s experiment types.

In the remainder of this section we describe the design
and rationale behind Eyeorg. In particular, we discuss how
we address the following three challenges:

1. How do we present page loads to participants? (§3.1)
Variations in load time caused by a particular partic-
ipant’s device or network could mask variations due
to the technique being tested. Furthermore, experi-
menters might want to test the impact of protocols or
browser extensions that participants’ browsers do not
support.

2. How do we ask questions about quality of experi-
ence (and get quantitative answers)? (§3.2) For
example, how can participants indicate to us when a
page “seems loaded” (particularly non-technical par-
ticipants)?

3. How do we get lots of trustworthy responses? (§3.3)
Drawing meaningful conclusions requires a large sam-
ple size; at the same time, recruiting participants not
invested in the experiments could yield careless, sloppy
responses.

3.1 Providing a Controlled Experience
Apart from the engineering challenge to build Eyeorg, a

more fundamental challenge lies in dealing with real peo-
ple. Testing participants’ reactions to a web experience “in
the wild” and at scale is difficult for several reasons. First,
differences between participants’ browsers could impact re-
sults. Second, in many cases the outcome we want to test
(like PLT) is dependent on network conditions, but we have
no control over the quality of participants’ network access.
Third, experimenters may want to test the impact of proto-
cols (e.g., HTTP/2 or SPDY) that some participants’ browsers
may not support, or browser extensions (e.g., AdBlockers)
that some participants may not have installed. In short, we
want to guarantee the same experience for each participant.

To ensure that all participants base their responses on iden-
tical experiences, Eyeorg uses video. This allows us to fully
control what participants see—we pick the browser, network
conditions, protocols, and plugins—regardless of individual
participants’ configurations.

We built a tool, webpeg, to record videos of web pages
loading. Pages are loaded with Chrome because: 1) unlike
headless browsers like PhantomJS5, Chrome provides rapid
(and optimized) support for new technologies like SPDY and
HTTP/2 and 2) Chrome offers better support for instrumen-
tation than Firefox or Safari. We use Xvfb6 (the X virtual
frame buffer) so we can run webpeg on machines without
displays (e.g., EC2 instances) and we capture videos in the
webm format7 (which offers small file sizes) using ffmpeg.8

We designed webpeg to be highly customizable. We use
Chrome’s command line options to control things like pro-
tocol (HTTP/1.1 or HTTP/2) and appearance (kiosk mode)
and Chrome’s remote debugging protocol9 to enable device
and network emulation. The remote debugging interface
also gives us detailed information about the page load (as
an HTTP Archive, or HAR), including when each object
loaded, which protocol was used, and when the onload event
fired. An alternative to using Chrome’s remote debugging
interface would have been to use the Navigation Timing API.10

However, the Navigation Timing API is designed to be ac-
cessed by web “applications” themselves via JavaScript. To
avoid any impact our methodology might have on perfor-
mance, we thus chose to use the asynchronous debugging
protocol. In the future, we will explore performant uses of
the NT API when expanding Eyeorg to other browsers. Fi-

5http://phantomjs.org/
6https://www.x.org/archive/X11R7.7/doc/man/man1/Xvfb.1.xhtml
7https://www.webmproject.org/
8https://ffmpeg.org/
9https://developer.chrome.com/devtools/docs/debugger-protocol

10https://developer.mozilla.org/en-US/docs/Web/API/Navigation_
timing_API

Figure 4: EYEORG’s experiment: Participants watch side-by-side page load videos and indicate
which load is faster.

captured at the server side after passing a proxy that modifies HTTP headers. It can be seen
that the UPGRADE and HTTP2-SETTINGS headers have been removed, and thus, the con-
nection is not able to progress to h2c. While different middleboxes react in a different way, this
behaviour leads in all cases to the mentioned fallback to HTTP 1.1.

In addition to the tool, a module supporting h2c for the Apache web server was implemented
and donated to Apache Project. There is a publicly available h2c test server4, running an
Apache server supporting both h2 and h2c for testing.

2.1.3.1 EYEORG

In addition to objective network measurements of HTTP/2 performance provided by the H2tool,
EYEORG [29] has been developed as a platform for crowdsourcing subjective user test for web
QoS measurements. EYEORG allows researchers to test the impact of changes to how a page
is structured or delivered, e.g. when HTTP 1.1 or HTTP/2 is used. It uses crowdsourced
participants to scale5 and shows videos of pages loading to provide a consistent experience
to all participants, regardless of their network connections and device configurations. With this
approach, it is possible to maintain full control of experimental conditions and to recruit any
participant with a modern web browser, without requiring special hardware or software.

As an example test and inline with the objective HTTP/2 comparison test performed by the
H2tool on the network directly, we ran an experiment where participants watch two page load
videos simultaneously and pick which loaded faster or “No Difference” (see Fig. 2.1.3.1). Video
pairs are shown in a random order (i.e., HTTP 1.1 is not always on the left and HTTP/2 is
not always on the right). As there is no guarantee that two videos in a browser stay perfectly
synchronized (for instance, lost packets might momentarily stall one video while the other con-
tinues playing), we splice them into a single video file; if the playback stalls, both sides are
affected equally. This kind of comparison experiment is easier to perform than e.g. indicating
page load time directly for each web page load video as it is not important to choose precisely
when a page is loaded completely.

4h2 and h2c public test URL http://testhttp2.bluevia.com/tests.html
5It is currently integrated with two popular service, Microworkers [17] and Crowdflower [6].
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Figure 5: Middlebox detection and localization with tracebox.

2.2 Finding Middleboxes

2.2.1 tracebox

To reveal the presence of middleboxes along a path, we are working on further developing
tracebox [7], an extension to the widely-used traceroute tool [28]. tracebox’s mechanism is
illustrated in Fig. 5. It relies on RFC1812 [3] and RFC792 [19] stating that the returned ICMP
time-exceeded message should quote the IP header of the original packet and respectively
the complete payload or the first 64 bits. tracebox uses the same incremental approach as
traceroute, i.e., it sends packets with increasing TTL values but that also have certain IP,
UDP, or TCP fields and options set. By comparing the quoted packet to the original, one can
highlight the modifications and the initial TTL value allows us to localize the two or more hops
between which the change took place. In Fig. 5, packet a is the originally sent one. The first
hop, that happens to be a middlebox, modifies its TCP Initial Sequence Number (ISN) and
sends the rewritten packet b to the next hop. When the next hop receives the expired packet,
it sends back to the client an ICMP time-exceeded packet c containing packet b as a payload.
When the tracebox client receives it, it is able to compare packet a and the payload of packet c
to detect any changes and the initial TTL value, i.e., 2, allows tracebox to bound the middlebox
location.

It is worth to notice that in 80% of the cases [7], a path contains at least one router which
implement RFC1812 [3], that recommends to quote the entire IP packet in the returned ICMP.
This means that, in most cases, tracebox is able to detect any modification performed by
upstream middleboxes.

tracebox works for IPv4, IPv6, and on Android devices [25] as described below.

2.2.1.1 TraceboxAndroid

Fig. 6 illustrates the general TraceboxAndroid architecture. As shown, it is made of three main
components: the system core where the tracebox intelligence has been included (coded in
C, under the front office), the front office (or the application) corresponding to the Android
application (coded in Java) and the back office (or server ) that is used to store data and make
offline analysis. Currently, the back office is implemented in our own server. In the near future,
we plan to directly communicated with the MAMI Observatory.

The front office communicates with the server using an XML API that gives the application the
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40 CHAPTER 5. TRACEBOX ON ANDROID

Figure 5.1: Communication links used by di↵erent parts of the project

The system is represented in figure 5.1.

As shown on the figure 5.1, I developed three modules in three di↵erent
languages (PHP/HTML for the server, JAVA for the App and C for the
Core). The App communicates with the server using an API based in XML
that gives the App the destinations to be probed and allows the App to send
the results from probes. The App communicates to the Core using an API
provided by the Android SDK (using Process and Runtime classes, as de-
scribed further. The Core itself send probes to the destinations using sockets
by system calls.

The Android app is to be available on the Play Store and widely deployed
in order to get results from all over the world and the more cellular carriers
possible. A clear representation of the deployed system is presented in figure
5.2.

The Android app is composed of 2518 lines of code in JAVA, 2556 lines
of PHP create the back o�ce and the core is made of 633 lines in C.

Figure 6: General overview of the TraceboxAndroid architecture

Figure 7: TraceboxAndroid on non rooted phones

destinations to be probed and allows it to send back the data collected by the system core. The
core itself implements tracebox and sends probes to the destinations using sockets by system
calls.

However, the main limitation for an Android app is that it is not possible to forge network and
transport headers or read ICMP control messages in non-rooted environments. We would need
raw sockets to anable this and their use is restricted to users that can grant the CAP_NET_RAW

POSIX capability (i.e., super users). To overcome this issue, we have extended the tracebox

methodology for TraceboxAndroid in order to be used on non-rooted phones. Fig. 7 illustrates
our solution. It works in four steps and considers three entities: the non-rooted phone, the
target, and a controlled server.

1. The non-rooted phone performs a standard traceroute towards the destination (this does
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Figure 8: Path length distribution.

not require the phone to be rooted). It thus reveals the presence of routers along the path.

2. The non-rooted phone sends a SYN packet to a known port towards the controlled server.

3. In response, the controlled server sends SYN+ACK packets in tracebox fashion with in-
creasing TTLs. This allows the server to discover routers between itself and the non-
rooted phone but also to collect packet modifications caused by middleboxes on the path
segment shared between step 1 and this step.6 Modifications caused by middleboxes
that are not in the path of interest (i.e., between the non-rooted phone and the target) are
discarded.

4. Finally, the controlled server sends a regular tracebox to the target. This allows the
server to discover routers between itself and the target, but also to collect packet modifi-
cations by middleboxes on the path segment shared between step 1 and this step. Similar
as in step 3, modifications not appearing in the path segment of interest are discarded.

This mechanism, in four steps, is called Triangle tracebox.

After the Triangle tracebox, the phone is able to display packet modifications that happens on
the first part of the path, on the last part of the path, and modifications of phone’s SYN packet
(excluding those that are only made on the path between the phone and the controlled server).
Additional statistics about hops in the middle of the path could potentially be retrieved from
the measurement data that other, rooted phones have previously already collected about those
routers.

TraceboxAndroid as presented in this section is directly available from the Google Play Store [34].

2.2.1.2 Proxy Detection

A proxy is a special kind of middlebox that is used as an application relay. It plays the role of
the server for the client, and the client for the server. Benefits of using a proxy, for an operator,
are many:

• It prevents direct connections from an internal network towards the Internet;
6This is possible due to tree-like structure of routes [10].
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standard tracebox Triangle tracebox

SYN+ACK received at hop ≤ 5
TTL received > TTL sent

SYN not received on server side,
but SYN+ACK received on the non-rooted phone side

Table 1: Summary of proxy detection techniques.

• It can analyze data within the application’s context and filter if required (URL or DNS
blacklists, keyword filtering, etc.);

• It can reformat pages (for smartphones, tablets);

• It may provide caching: the proxy can keep a local copy of content that it has fetched
and, when another client asks for the same content, it can directly deliver the local copy
leading to faster load times for the client.

• It supports anonymous surfing (as the user IP address is hidden).

Typical types of proxies are transparent proxies (i.e., a proxy that does not modify the HTTP
request or response beyond what is required by the proxy authentication and identification [13]),
FTP proxies, SMTP proxies, or DNS proxies.

Fig. 8 plots path length distribution as observed by a tracebox vantage point. The plot can
be separated in two parts: below 5 hops and above 5 hops. Above 5 hops, we more or less
observe the familiar bell-shaped curve typical of Internet interface distance distributions [10],
with an “average” path length of 15 hops. Below 5 hops, where lies most of the distribution, we
suspect the presence of a proxy replying in place of the server.

As a consequence, if a tracebox vantage point receives a response (SYN+ACK in case of TCP)
for a TTL sent lower (or equal) to 5, we infer the presence of a proxy (more likely a transparent
proxy).

This technique can be used in both standard tracebox and TraceboxAndroid. In addition,
Triangle tracebox comes with additional features that allows to improve our proxy detection

1. TTL of received packet on the non-rooted phone. If this TTL is higher than the one
sent, we advocate the TTL field has been rewritten along the path, typically by a proxy.
However, in some cases, proxies delay SYN, so the packet cannot be received by the
controlled server. In that case, the next method can be considered.

2. SYN+ACK received by the phone but the controlled server never sent a SYN+ACK. In that
case, it means that the proxy answers every SYN (to speedup connections) before for-
warding them to the actual destination. We can observe such a case as the server is
under control.

Table 1 summaries proxy detection techniques with tracebox.

2.2.1.3 NAT Detection

Normally, Network Address Translators (NATs) are quite transparent to traceroute. They are
supposed to modify source IP address and port on the outgoing packet but restore them on the
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incoming packets. They do this even in the quoted packet inside an ICMP time-exceeded.

However, NATs do not only have to change port number and IP address but they also have to
update IP and TCP/UDP checksums to be consistent. It does happen that NATs do not update
checksums in time-exceeded message. Thus, analyzing the checksums of the quoted packet
in the received time-exceeded message identifies certain NATs along the path.

2.2.2 NAT Revelio

In terms of IP addressing, home networks generally use private IP address space where a
home gateway performs Network Address Translation (home-NAT) from the private addresses
within the home network to the addresses used in the ISP access network which may be pub-
lic, private or shared [33]. In some cases, end-users can configure several different realms
of private addresses within their home network in the context of cascaded home NATs. Inde-
pendently of the home network topology, when a host within the home network communicates
with a host in the rest of the Internet, the private address used by the host in the home net-
work translates to a public address, the Globally Routable Address (GRA). For the majority of
the residential Internet market, the ISP configures the GRA on the Internet-facing interface of
the Costumer Premises Equipment (CPE) and the Network Address Translation (NAT) func-
tion in the CPE translates from the private addresses in the home network to the GRA [15].
An alternative, incipient, setup is one including an additional NAT function that operates in the
ISP network (in addition to the NAT function in the CPE) and performs the final translation to
the GRA. These configurations are usually called Carrier Grade NAT (CGN), Large Scale NAT
(LSN) or NAT444. In this case, packets flowing between the home network and the Internet go
through two upstream NAT-capable devices: the CPE (customer grade NAT) and the ISP NAT
(Carrier-Grade NAT).

As a consequence, CGNs might represent an approach to prolonging the life of current ad-
dress allocations, where ISPs share the same public IPv4 address across multiple end users.
However, CGNs may introduce a number of issues for end users, service providers, and
content providers. There is some evidence that CGNs can cause dropped services in peer-
to-peer applications, and lead to low performance of file transfer and video streaming ses-
sions [9, 1]. CGNs also introduce security challenges including traceability of IP addresses and
anti-spoofing. Despite these challenges, CGNs offer an immediate relief to the IPv4 address
scarcity problem, so it is likely that their popularity will increase or at least remain stable over
time.

The goal of NAT Revelio7 is to detect CGNs by distinguishing whether the NAT function trans-
lating to the GRA is located within the home network or in the ISP network. In Fig. 9 we depict
the residential setup we consider to further explain the NAT Revelio methodology. The home
network may have an arbitrary topology consisting of multiple hosts, routers and switches in-
cluding multiple levels of NATs. The home network connects to the Internet through the CPE
also known as “home router” or “home gateway”. The access link connects the CPE with the
ISP access network. The ISP network then connects with the rest of the Internet.

In order to discern where the translation to the GRA occurs, NAT Revelio performs active tests
from a device connected to the home network. The probe running NAT Revelio connects to the
home network and may or may not be directly connected to the CPE, i.e., there may be multiple

7Sources are freely available at https://github.com/mami-project/revelio
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Figure 9: NAT Revelio assumed experimental setup.

hops, including ones performing NAT function(s), between the probe and the CPE. The target
of the active tests are servers located in the Internet (Fig. 9). NAT Revelio does not require
any cooperation from the ISP beyond forwarding Internet packets to and from the customer.

As mentioned earlier, the purpose of NAT Revelio is to detect whether the device performing
the translation to the GRA (hereinafter GRA-NAT) resides in the home network or in the ISP
network. In order to do this, NAT Revelio attempts to pinpoint the location of the GRA-NAT with
respect to the access link. If the GRA-NAT lies between the probe and the CPE, we conclude
that the user is not behind a CGN. If the GRA-NAT lies after the CPE, we conclude that the
ISP deploys CGN. In order to achieve this, NAT Revelio needs to determine the location of the
GRA-NAT and the location of the access link with respect to the probe and compare them.

2.2.2.1 Initial NAT Revelio Tests

To determine the location of the GRA-NAT, NAT Revelio performs the following steps:

1. It discovers the GRA by running STUN [22] against a public STUN Server located in the
Internet (for the case of SamKnows) or by using the RIPE Atlas API8 (for the case of
Atlas);

2. It runs a traceroute to the GRA, computing the number of hops to the GRA-NAT;

The determination of the location of the access link is challenging because we aim to support
arbitrary topologies in the home network and we do not have any prior information about where
in the home network the probe connects. To determine the location of the access link we
make the following assumption: the propagation delay of the access link is at least one order of
magnitude higher than the propagation delay of the links in the home network. We believe this
is a realistic assumption for the different access technologies and home network technologies
available in the market and it is supported by existing empirical evidence [24]. In order to
locate the access link, we estimate the propagation delay of different links between the probe
and an arbitrary target server in the Internet using pathchar [11]. pathchar is a well-known
technique for estimating transmission and propagation delays along the path using traceroute.
Since we only need to estimate the order of magnitude of the delays, the precision of pathchar
is sufficient. Using the propagation delays measured by pathchar, we determine the access
link as the first one with a propagation delay at least one order of magnitude higher than the
previous links.

8See section 3.6.1 for NAT Revelio deployment details.
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By comparing the respective locations obtained for the GRA-NAT and for the access link, we
can establish whether the GRA-NAT is located before the access link (no CGN) or after the
access link (ISP uses CGN).

2.2.2.2 Supplementary NAT Revelio Tests

In addition to the main detection tests, the NAT Revelio client performs two other tests to gain
additional insight about the presence of CGNs:

Invoke UPnP actions: If the probe directly connects to the CPE (i.e., the access link is one
hop away), NAT Revelio tries to run the UPnP protocol [27] from the probe to retrieve the
IP address of the WAN-facing interface of the CPE. If this IP address matches the GRA, we
conclude that there is no CGN. Otherwise, if the UPnP query returns a private/shared address,
NAT Revelio detects an upstream CGN.

Private/shared addresses along the path: To detect the access link location, NAT Revelio

runs multiple traceroute measurements to a fixed target. This enables us to retrieve the IP ad-
dresses operators configure in their network. We then search for private and shared addresses
after the access link. The detection of private/shared addresses after the access link alone
does not imply the presence of an upstream CGN, but it serves as a hint that the ISP might be
operating one. In particular, the presence of shared addresses after the access link provides
a stronger indication about the presence of CGNs, because this address block is specifically
reserved for CGN deployment [33].

2.2.2.3 Evolving NAT Revelio

After acquiring additional operational experience with NAT Revelio and communicating with
several of the ISPs we measured, we identified some corner cases that may confuse NAT
Revelio. To tackle this particular issue and increase the robustness of NAT Revelio to non-
standard home network topologies, we enhanced the original NAT Revelio methodology by
adding the following two tests to the test-suite.

Expected access technology delay. In some cases, we have detected that the propagation
delay of the different links within the home network differs in one order of magnitude (e.g. one
link with a delay of tens of µs and another one with delay in the hundreds of µs). In this case,
the delays of both home network links are still one order of magnitude less than the propagation
delay of the access link. In order to deal with this case, we define an expected range for the
access link delay based on the access technology and we verify if the access link delay we
measure falls within the expected range. If this is not the case, we mark the first link that falls
within the expected range as the access link.

Pathchar to the GRA. We identified some home gateways that generated replies to traceroute
as if they were two hops. Namely, when processing traceroute packets from the probe, they
generate one reply from the internal interface (for packets with TTL=n) and a second reply
from the external WAN-facing interface that assigns the GRA (for packets with TTL=n+ 1). We
detected this behavior in several models of home routers, including SpeedPort and FritzBox.
This behavior breaks the NAT Revelio methodology because the GRA appears to be one hop
farther from the probe than it is. In order to detect these cases, we run pathchar from the
probe to the GRA and we contrast the results with the ones we obtain running pathchar from
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the probe to the external server. If the CPE generates two replies to the traceroute to the GRA,
the delay of the spurious link from the CPE to the GRA measured by the pathchar to the GRA
is significantly smaller than the delay of the subsequent ”real” link measured by the pathchar

to the external server. This is so because the spurious link is internal to the CPE, while the
subsequent link is the actual access link. By comparing the two pathchar results, we can
identify these anomalous CPEs and correctly identify the GRA at hop n.
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3 Measurement Campaigns

In this chapter, we report early efforts on deploying measurement tools described in Chap. 2.
These deployments were mostly done in parallel to the tool development and refinement, re-
sulting in separate measurement studies. Integration into the Path Transparency Observatory
is currently in progress.

Based on the order of discussion in the previous chapter, we first discuss path impairment as
detected by PATHspider (Sec. 3.1) and copycat (Sec. 3.2). In addition to our copycat mea-
surements, we further provide results on UDP blocking based on RIPE Atlas data (Sec. 3.3),
and then discuss HTTP/2 comparison results (Sec. 3.4). Afterwards, we present our results on
deteced middleboxes by tracebox (Sec. 3.5) and NAT Revelio (Sec. 3.6).

3.1 PATHspider Deployment

3.1.1 Measurement Setup

Our initial measurements with PATHspider have largely been directed at looking at path trans-
parency on service provider, as opposed to access provider, networks. To this end, we have
deployed PATHspider on a set of virtual machines on the network of cloud provider Digital
Ocean, and focused our measurements on targets taken from the Alexa top million websites
list. We have performed four separate measurement campaigns: one each measuring ECN
(Sec. 3.1.2.1), DSCP (Sec. 3.1.2.2), TFO (Sec. 3.1.2.3), and HTTP/2 (Sec. 3.1.2.4).

3.1.2 Initial Results

3.1.2.1 ECN Connectivity and Negotiation

We performed measurements in June 2016 to revisit our earlier measurements in our PAM
paper describing measurements taken in September 2014 [26], to determine whether ECN
support in the Internet had changed.1

Indeed, we noted a continuation of the mostly-linear trend of ECN negotiation adoption, in
that 432544 of 617873 (70.005%) of IPv4 addresses and 20262 of 24472 (82.797%) IPv6 ad-
dresses negotiated ECN as of the measurement campaign. However, we noted that the propor-
tion of servers requiring fallback has not changed appreciably since our 2014 measurements:
0.44% of IPv4 and 0.11% of IPv6 servers. This reflects the two different forces at work: ECN
support on the server side generally follows the operating system defaults, and web hosting
machines generally run a recent Linux, the first operating system with server side ECN on by
default. Connectivity problems, however, are often a function of faulty middleboxes, which are
more slowly replaced, or firewall rules explicitly disabling ECN traffic for dubious reasons.

1The content of this section is taken from our MAMI project blog post at https://mami-project.eu/index.php/
2016/06/13/70-of-popular-web-sites-support-ecn/; this work was cited at an Apple Worldwide Developer’s
Conference address on modern networking, available at https://developer.apple.com/videos/play/wwdc2016/
714/
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3.1.2.2 DSCP

We ran PATHspider to test DSCP codepoint rewriting from seven vantage points hosted by
Digital Ocean in Amsterdam, Frankfurt, London, New York, San Francisco, Singapore and
Toronto on the 30th September 20162. Connections were attempted to each of the 673,230
IP addresses from each of these vantage points to give a total of 4,712,610 paths.

For the 3,523,405 paths where the baseline – outgoing DSCP value of zero – connection suc-
ceeded, we found that 3,519,626 (99.89% of those succeeding with the baseline connection)
of experimental connections to IPv4 hosts succeeded with the outgoing DSCP value set to 46
(EF) and 136,469 (99.93%) of experimental connections to IPv6 hosts also succeeded with the
same code point. For all hosts, we only saw code point dependent connectivity loss on 3,965
(0.11%) of paths. Additional analysis of this measurement run, also in comparison to further
measurement runs planned for the beginning of 2017, are in preparation for publication.

We attempted to run this measurement from further vantage points within Microsoft’s Azure
cloud platform, but discovered that the DS field is bleached by Azure’s network on ingress, so
no meaningful results could be collected.

3.1.2.3 TCP Fast Open

We ran PATHspider to test TCP Fast Open connectivity and functionality from six vantage
points hosted by Digital Ocean in Amsterdam, Frankfurt, London, San Francisco, Singapore,
and Toronto on 12-13 October 20163. PATHspider allows us to classify connection attempts
with TFO as follows, in increasing order of brokenness:

• TFO works: TFO cookie received, data on SYN+ACK

• TFO data not ACKed: TFO cookie received, but only SYN+ACK.

• TFO data failure: TFO cookie received, SYN with data fails

• TFO not negotiated: TFO negotiation results in non-TFO connection.

• TFO connection failure: TFO option breaks connectivity (RST or drop).

• Connection failure: No connection attempt to target succeeded.

Our results are summarized in table 2 showing a total of 513 IPV4 and 50 IPv6 hosts supporting
TFO of which 83% to 88% are operated by Google.

3.1.2.4 HTTP/2 Discovery via ALPN/NPN

We ran PATHspider to test seven vantage points hosted by Digital Ocean in Amsterdam, Frank-
furt, London, New York, San Francisco, Singapore and Toronto on the 8th October 2016 for
ALPN and on the 11th October 2016 for NPN. Connections were, again, attempted to each

2The content of this section is taken from a paper currently under submission to PAM 2017
3The content of this section is taken from a paper currently under submission to PAM 2017. Analysis and instruc-

tions for accessing raw data for this study are available at https://github.com/mami-project/must-go-faster
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IPv4 IPv6
hosts pct hosts pct description

15818 2.55% 2959 5.62% Completely failed to connect
208 0.03% 3 0.01% Failed to connect w/TFO option

4 <0.01% 0 0.00% ...consistently (non-transient)
604023 97.34% 49658 94.28% Did not negotiate TFO

528 0.09% 50 0.10% Negotiated TFO (exchanged a cookie); of which:
513 0.38% 50 100.00% ACKed data on SYN

0 0.00% 0 0.00% Failed connection with data on SYN

14 2.65% 2 4.00% Returned a cookie on ACKed data
11 2.08% 0 0.00% Responded with a 6-byte cookie
15 2.84% 0 0.00% Responded with an experimental option

441 83.52% 44 88.00% are in AS15169 (Google)

Table 2: TFO summary statistics, of 620560 IPv4 hosts and 52670 IPv6 hosts tested on 12-13
October 2016.

of the 673,230 IP addresses from each of these vantage points. We discovered that 381,062
(56.60%) of the distinct hosts would accept connections on TCP port 443. This is, as ex-
pected, less target measurements points than in the previous sections but still provides a total
of 2,667,434 distinct paths to use for measurement.

For the 2,667,434 paths where a listening TCP port was observed for HTTPS, we saw that
on 1,154,130 (43.26% compared to 12.1% in October 2015 [30]) of those paths we success-
fully negotiated NPN. Further we saw that on 842,245 (31.57% compared to 5.1% in October
2015 [30]) paths we successfully negotiated ALPN. Again, additional analysis of this measure-
ment run, also in comparison to further measurement runs planned for the beginning of 2017,
are in preparation for publication.

3.1.3 Future Deployment

Most of our initial measurements were limited to relatively unimpaired access networks: indeed,
Digital Ocean was chosen as a provider to host PATHspider tests precisely because its network
is essentially unimpaired (v6 support, no NAT, no blocking before the virtual host firewall), allow-
ing us to isolate impairments on content provider networks and within the Internet core. Future
planned deployment (as part of Task 1.3 starting beginning of 2017) on the MONROE wireless
testbed will allow us to measure similar impairments on a variety of fixed and mobile access
networks to get a better picture of the other side of path transparency impairment.

3.2 copycat Deployment

3.2.1 Measurement Setup

We deployed copycat on the PlanetLab distributed testbed on the entire pool (153) of available
nodes between March 6th and April 23rd, 2016. Considering PlanetLab port binding restrictions
(e.g., 80, 8000, and 53, 443 on certain nodes), we chose seven ports-53, 443, 8008, 12345,
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Dataset Throughput (kB/s) Latency (ms)
< 200 > 200 < 50 > 50

# flows median # flows median # flows median # flows median
PlanetLab 740,721 0.05 34,896 0.16 745,947 0.00 29,370 -1.65
DO v4 12,563 0.03 3,637 -0.37 9,381 -0.02 6,819 -0.44
DO v6 15,459 0.07 224 -0.16 15,656 0.00 27 3.63

Table 3: Raw number of bias measurements (throughput and initial latency) per sub dataset
(“DO” stands for Digital Ocean). The 50ms cut-off roughly corresponds to inter-continental
versus intra-continental latency

33435, 34567, and 54321- respectively DNS, HTTPS, HTTP alternate, a common backdoor,
the RIPE Atlas UDP traceroute default (see next section), an unused and an unassigned port,
to maximize routers policy diversity. For each port and pair of nodes, we generated 20 pairs
of flows of 1, 3, and 30 TCP initial windows, and 10 pairs of flows of 300 and 1, 500 TCP initial
windows of data to send, for a total of 4,908,650 flows.4

Then, we selected 93 nodes (one per subnetwork) from the entire pool to maximize path diver-
sity. The selected nodes are located in 26 countries across North America (44), Europe (29),
Asia (13), Oceania (4), and South America (3). The filtered PlanetLab dataset then consists of
1,634,518 flows.

We also deployed copycat on six Digital Ocean nodes, located in six countries across North
America (2), Europe (3), and Asia (1). Given the less restrictive port binding policies and the
more restrictive bandwidth occupation policies, we tested ports 80 and 8000 in addition of the
PlanetLab ports. For each port, we generated 20 pairs of flows of 1, 3, and 30 TCP initial
windows size between May 2nd and 12th, 2016. We repeated the same methodology for both
IPv4 and IPv6. This dataset consists in 32,400 IPv4 and 31,366 IPv6 flows.

3.2.2 Initial Results

To evaluate the impact of transport-based differential treatment on throughput, we introduce the
relative throughput bias metric for each pairs of concurrent flows. This is computed as follows:

throughput bias =
(throughputudp − throughputtcp)
min(throughputtcp, throughputudp)

× 100. (3.1)

A positive value for throughput bias means that UDP has a higher throughput. A null value
means that both UDP and TCP flows share the same throughput.

Fig. 10 provides a global view of the throughput bias. Dataset has been split between flows
< 200 KB/sec and flows > 200KB/sec, except for Digital Ocean IPv6, as the number of mea-
surements is too small to be representative. Table 3 gives the size of each sub dataset and the
relative median bias for throughput and latency.

For both Digital Ocean dataset, the non-null biases are mostly evenly distributed in favor and
disfavor of UDP. In PlanetLab, we observe an extreme case where TCP performs better than
UDP, the 4% and 2% highest throughput bias in absolute value are respectively higher than
1% and 10%.

4The complete dataset is freely available at http://queen.run.montefiore.ulg.ac.be/~edeline/copycat/.
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Figure 10: Relative throughput bias, as measured by copycat (“DO” stands for Digital Ocean).
Positive values mean UDP has higher throughput. DO IPv6 has not been split in two due to
lack of enough values (see Table 3).

The loss rate of congestion controlled traffic in steady state, where the link is fully utilized, is
mostly determined by the congestion control algorithm itself. Therefore, there is a direct relation
between throughput and loss. However, as TCP congestion control reacts only once per RTT
to loss as an input signal, the actual loss rate could still be different even if similar throughput
is achieved. Here, we understand loss as the percentage of flow payload lost, computed from
sequence numbers. A value, for instance, of 10% of losses means thus that 10% of the flow
payload has been lost.

Generally speaking, the loss encountered is quite low, given that small flows often are not
large enough to fully utilize the measured bottleneck link. As expected based on he throughput
observed, we see no significant loss difference in both PlanetLab and Digital Ocean when
comparing TCP and UDP, except of 3.5% in favor of UDP for the largest flow size (6MB).
However, since all copycat traffic is congestion controlled, throughput is also influenced by the
end-to-end latency. As discussed next, we can correlate this slightly lower throughput with a
slightly larger initial RTT, where we use initial RTT measured during the TCP handshake as
baseline for the end-to-end latency.

In the fashion of throughput bias (see Eqn. 3.1), we introduce the relative RTT bias metric for
each pair of concurrent flows. This is computed as follows:

RTT bias =
(RTTtcp −RTTudp)
min(RTTtcp, RTTudp)

× 100. (3.2)

A positive value for RTT bias means that UDP has a smaller initial latency (i.e., performs better
than TCP). A value of zero means that both UDP and TCP flows share the same initial latency.

The median latency bias is also listed in in Table 3 (right part). For PlanetLab, there is no latency
bias for flows with an initial RTT of 50ms or less and a slight bias towards higher latency for
UDP for flows with larger initial RTTs. For Digital Ocean we also observed a slight bias towards
higher latency for UDP for IPv4 and no bias for IPv6 (considering 27 flows with a larger RTT
than 50ms as not representative). This is confirmed by the CDF shown in Fig. 11.

The 2% and 1% most biased flow pairs have an RTT bias respectively lower than -1% and
-10%. For the Digital Ocean IPv4 campaign, 40% of the generated flows have an RTT bias
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Figure 11: UDP/TCP initial RTT bias as measured by copycat (“DO” stands for Digital Ocean).
Positive values mean UDP is faster. DO IPv6 and Atlas have not been split in two due to lack
of enough values (see Table 3).

between 1% and 30% in absolute value. The difference between IPv4 and IPv6 on Digital
Ocean appears to be due to the presence of a middlebox interfering with all IPv4 traffic, both
TCP and UDP.

3.3 RIPE Atlas Measurement

3.3.1 Measurement Setup

We used the RIPE Atlas [21] measurement network to provide another view (in addition to the
measurements performed with copycat as presented in the previous section) on UDP block-
age on access networks and possible MTU effects on such UDP blockage. We compared UDP
traceroute and TCP traceroute measurements from a set of 115 Atlas probes in 110 net-
works (identified by BGP AS number) to 32 Atlas anchors (i.e., Atlas nodes having higher mea-
surement capacities than standard Atlas probes). The measurements ran between September
23rd and 26th, 2015, with all probes testing each anchor sequentially, sending three packets
in a row once every twenty minutes, for up to 17 connection attempts (51 packets) each for
UDP/33435, TCP/33435, and TCP/80.

To review, TCP traceroute sends SYNs with successively increasing TTL values and observes
the ICMP time-exceeded responses from routers along the path and the SYN+ACK or RST from
the target. UDP traceroute sends packets to a UDP port on which presumably nobody is
listening, and waits for ICMP time-exceeded or destination-unreachable responses from
the path and target respectively.

For the measurements that we initiated on the RIPE Atlas platform we set the initial TTL to 199,
which is sufficient to reach the destination in one run without generating any time-exceeded

messages from the path, i.e., treating traceroute as a simple ping.

As further described below we found that, while “common knowledge” holds that some networks
severely limit or completely block UDP traffic, this is not the case on any of the selected probes
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in this first measurement. To get a handle on the prevalence of such UDP-blocking networks, we
also looked at 1.1 million RIPE Atlas UDP traceroute measurements run in 2015, including
those from our first campaign. Here, we assume that probes which perform measurements
against targets which are reachable by other probes using UDP traceroutes, but which never
successfully complete a UDP traceroute themselves, are on UDP blocked access networks.

Further, we used a single campaign of about 2.5 million UDP and ICMP traceroutes from about
10,000 probes with different packet sizes in March 2016, to compare protocol-dependent path
MTU to a specific RIPE Atlas anchor. We compared success rates with UDP at different packet
sizes to ICMP.

3.3.2 Initial Results

Dataset
Results

# Probes
No UDP Connectivity

total failed
Latency, 2015 110 0 0.00%
All UDP, 2015 2,240 82 3.66%
all MTU, March 2016 9,262 296 3.20%
72 bytes 9,111 244 2.68%
572 bytes 9,073 210 2.31%
1,454 bytes 8,952 137 1.53%

Table 4: Overview of our results on UDP connectivity. The upper part of the table shows the
percentage of probes with UDP being blocked, as measured by RIPE Atlas in 2015 and 2016
(Sec. 3.3.2 for details).

Table 4 provides an overview on our main results. In summary, we show that, aside from
blocking of UDP on certain ports, as well as relatively rare blocking of all UDP traffic on about
one in thirty access networks, UDP is relatively unimpaired in the Internet.

Of the 2,240 RIPE Atlas probes which performed UDP traceroute measurements against
targets which were reachable via UDP traceroute in 2015, 82 (3.66%) never successfully
completed a UDP traceroute. We take this to be an indication that these probes are on UDP-
blocking networks. The location of the blockage, determined by the maximum path length seen
in a UDP traceroute, is variable, with the median probe seeing at least one response from the
first five hops. These UDP-blocked probes are more likely than the population of all examined
probes to be on networks in sub-saharan African and east Asian countries.

Our investigation of MTU issues showed no significant relationship between packet size and
probe reachability up to 1,420 bytes per packet, as compared to ICMP. In this shorter study
in March 2016 using more probes, 296 of 9,262 probes (3.20%) did not receive a response
from the target from the UDP traceroute for any packet size. For 72, 572, and 1,454 byte
packets, respectively, 2.68%, 2.31%, and 1.53% of probes received no response to a UDP
traceroute attempt when receiving an response from an ICMP traceroute of the same size.
These results are summarized in Table 4. Note that the relative UDP blocking numbers go
down as the packet size goes up; this is because large ICMP packets are more often blocked
than large UDP packets. From these results, we conclude that differential treatment between
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Figure 12: Plot of the data available at the HTTP/2 Dashboard

UDP and TCP should not pose a challenge to using UDP as an outer transport.

3.4 H2tool and EYEORG

3.4.1 Measurement Setup

The first measurements regarding HTTP/2 availability and h2/h2c middlebox impairments used
the H2tool, according with these three phases:

• Phase I: Worker agents on PlanetLab probe a list of sites based on the top 1 million Alexa
sites, using NPN and ALPN to determine which sites announce HTTP/2 support.

• Phase II: Worker agents in labs in Cleveland (USA) and Barcelona (Spain) attempt to
fetch the root object for each site that claims to support HTTP/2. The result is a list of
sites that partially and truly support HTTP/2..

• Phase III: Crawler agents in Barcelona, Cleveland, and Pittsburgh fetch each site that
actually supports HTTP/2 using HTTP/1.1 and HTTP/2 and records performance and
usage information like page load time and number of TCP connections used.

In addition, we captured videos of 100 top AlexaTop websites while loading over HTTP/1.1 and
HTTP/2 for the EYEORG subjective QoE performance test. We repeated each load five times and
kept the video with the median load time.
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(c) Comparison of ad blockers.

Figure 8: A/B Results.

Are existing metrics able to predict the value of UserPer-
ceivedPLT? While correlation gives a rough picture of how
each metric relates to UserPerceivedPLT, it is also impor-
tant to show how close the actual values are. Figure 7(c)
shows a CDF of the difference between UserPerceivedPLT
and each PLT metric, i.e., a negative number indicates that
participants selected a time before that metric indicated the
page had loaded. Overall, OnLoad was within 100 ms of the
mean UserPerceivedPLT for 30% of the sites compared to
just 7% for SpeedIndex. Also note that 60% of the UserPer-
ceivedPLT values are smaller than OnLoad—that is, OnLoad
tends to over-estimate. Unsurprisingly, FirstVisualChange
and LastVisualChange under- and over-estimate, respectively.

Can existing metrics at least tell us “which is faster”? Fi-
nally, we quantify how good the existing PLT metrics are at
identifying a difference in load time between two page loads
using data from the HTTP/1.1 vs HTTP/2 A/B campaign.
Intuitively, choosing which site in an A/B test is faster be-
comes easier as the absolute difference between the “true”
load times for A and B (�) increases. Therefore, we can
use the level of participant agreement as a proxy for �—the
more the participants agree, the larger � likely was.

Based on this reasoning, 1) if a PLT metric is good, we
expect to see agreement increase monotonically as the mea-
sured � for that metric increases, and 2) the higher the agree-
ment for a particular �-value for a particular metric, the
more confidence we have that when we measure a � of that
size in the future, it represents a meaningful difference in
UserPerceivedPLT. Figure 8(a) shows the median agreement
(as previously defined in §4.2 Figure 4(c)) among partic-
ipants for HTTP/1.1/HTTP/2 video pairs as a function of
each metric’s �. Overall, Figure 8(a) shows that as � in-
creases, participants tend to agree more, which matches our
intuition. While there is no clear winner among the PLT
metrics, the figure shows that OnLoad better captures small
loading time differences (�  200 ms) whereas SpeedIndex
and FirstVisualChange do a better job in the medium range
(200 < �  800 ms). The figure also shows that LastVi-
sualChange and SpeedIndex do not exhibit a monotonic in-
crease in agreement as � grows, meaning that small vari-
ations in LastVisualChange and SpeedIndex measurements
are less significant.

5.3 HTTP/1.1 vs HTTP/2
Do users perceive a speed difference between HTTP/1.1
and HTTP/2? In this section, we examine the responses
from our HTTP/1.1 vs HTTP/2 A/B campaign. Figure 8(b)
shows the CDF of the average “score” per website; 0 means
the HTTP/1.1 version was faster, 0.5 is a “split” decision,
and 1 means the HTTP/2 version was faster. We plot scores
for 1) all websites, 2) websites with similar HTTP/1.1 and
HTTP/2 PLTs (�  100 ms), and 3) websites that loaded
much faster over one protocol than the other (� � 800 ms).
To build these subsets, we compute PLT using SpeedIndex.

Figure 8(b) shows that 70% of the websites have an av-
erage score of 0.8 or higher; this means that 70 out of 100
websites “feel” faster using HTTP/2 than HTTP/1.1. Con-
versely, 12% of the websites have an average score of 0.2 or
lower and thus feel faster using HTTP/1.1. The remaining
18% of websites create some disagreement. Note that the
score here does not take into account the “No Difference”
responses. These websites with scores in the 0.2–0.8 range
also have twice as many No Difference responses compared
to the other websites. This further indicates that participants
are just not sure which version was actually faster.

Next, we focus on the subset of websites with similar
PLTs (�  100 ms). The figure shows that participant in-
decision grows, with more scores in the 0.2–0.8 range. This
is to be expected based on the results from Figure 8(a). On
the other hand, when � � 800 ms, participants mostly agree
on which version was faster. This result indicates that, while
aiming at reducing loading time of a webpage is overall ben-
eficial, many users are not able to appreciate the difference
when only few hundred milliseconds are saved.

5.4 Ad Blocker Comparison
How do popular ad blockers impact PLT? We compare
three popular ad blockers, AdBlock, Ghostery, and uBlock.
Figure 8(c) shows the CDF of the average “score” obtained
by each website where 0 means the original version with ads
was faster and 1 means the ad-blocked version was faster.

The figure shows that 30–40% of the websites have scores
in the 0.2–0.8 range, i.e., participants did not agree on which
version was faster. This is about 15% more compared to

Figure 13: HTTP/1.1 vs HTTP/2.

3.4.2 Initial Results

The results of the HTTP/2 impairment measurements are currently available at the HTTP/2
Dashboard web site (http://isthewebhttp2yet.com/), which is the product of continuous
data collection campaigns started before the beginning of the MAMI project, and enhanced
during the project lifetime, as shown in Fig. 12. As previously noticed the PATHspider TLS
plugin follows the same methodology as the used for the collection of data available at this site
(see Sec. 3.1.2.4). The integration the this data into the MAMI Observatory is under currently
under consideration, even with the possibilty of using PATHspider for inclusion into the HTTP/2
Dashboard.

In what relates to the EYEORG results, Fig. 13 shows the CDF of the average “score” per website;
0 means the HTTP/1.1 version was faster, 0.5 is a “split” decision, and 1 means the HTTP/2
version was faster. We plot scores for (i) all websites, (ii) websites with similar HTTP/1.1 and
HTTP/2 page load times (∆ ≤ 100ms), and (iii) websites that loaded much faster over one
protocol than the other (∆ ≥ 800ms). To build these subsets, we compute the page load time
(PLT) using SpeedIndex.5

Fig. 13 shows that 70% of the websites have an average score of 0.8 or higher; this means
that 70 out of 100 websites “feel” faster using HTTP/2 than HTTP/1.1. Conversely, 12% of
the websites have an average score of 0.2 or lower and thus feel faster using HTTP/1.1. The
remaining 18% of websites create some disagreement. Note that the score here does not take
into account the “No Difference” responses. These websites with scores in the 0.2–0.8 range
also have twice as many No Difference responses compared to the other websites. This further
indicates that participants are just not sure which version was actually faster.

Next, we focus on the subset of websites with similar PLTs (∆ ≤ 100ms). Fig. 13 shows that
participant indecision grows, with more scores in the 0.2 to 0.8 range. On the other hand, when
∆ ≥ 800ms, participants mostly agree on which version was faster. This result indicates that,
while aiming at reducing loading time of a webpage is overall beneficial, many users are not
able to appreciate the difference when only few hundred milliseconds are saved.

5SpeedIndex defines PLT as the average time at which above-the-fold content is displayed. See https://sites.

google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
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Network type rooted unrooted both
Cellular 28 34 22
WiFi 38 81 40

Table 5: Subdataset considered for TraceboxAndroid analysis. It provides the raw number of
device type (rooted, unrooted or both) of each kind of network connection (WiFi or Cellular).

3.5 tracebox Deployment

3.5.1 Measurement Setup

We deployed standard tracebox (see Sec. 2.2.1) on wired IPv4 networks via PlanetLab. We
selected the maximum number of nodes available for each campaigns (between 108 and 129).
Destinations have been selected using the top 1M Alexa website. We conducted 15 campaigns
over nine different ports (80, 8080, 8000, 8800, 443, 53, 12345, 1228, 34567) with different
probes (different TCP options including MSS, SACKP, and SACK) for a period of two months be-
tween March, 3rd and May, 8th 2016, each campaign lasting between three and sever days.
The corresponding 1.3TB dataset has been uploaded to the Observatory raw data database in
json format. Further analysis of these data in the Observatory are in progress.

In parallel to the measurement of standard tracebox, we also deployed (through crowdsourc-
ing6) TraceboxAndroid (see Sec. 2.2.1.1). We were able to collect data from 214 users, scat-
tered in 45 countries. Those users are served by 80 different carriers. We collected information
on probes sent on both cellular and WiFi networks. We removed from the dataset inconsis-
tent data (i.e., the mobile device was not able to send enough data to infer statistics). Table 5
summarizes the dataset we use in the following.

3.5.2 Initial Results

3.5.2.1 Standard tracebox

We first selected the nodes that remained available during all campaigns (89). During the entire
measurement campaign, we observed 955,806 different responsive hops (excluding vantage
points and targets addresses), parts of 2,978 different ASes. The more represented ASes
are Cogent (35.7% of all addresses – Tier 1 network), CenturyLink (10.6% – Tier 1 network),
Telia Carrier (6.3% – Tier 1 network), NTT (3.4% – Tier 1 network), Rackspace (1.8%), Level3
(1.6% – Tier 1 network), and Chinanet (1.5%). The corresponding addresses are geographi-
cally distributed in North America (40.4%), Europe (37.5%), Asia (18.7%), Latin America and
Caribbean (2.7%), and Africa (0.7%) according to the regional Internet registries. The same
addresses were registered under 189 different country codes.

We analyzed the responsive hops (addresses from which we received at least one packet) over
time, on ports 80 and 443 only because firewalls blocked probes on other ports (even non
standard HTTP) and avoided nodes located behind them to answer. 86.1% of all hops were

6Faggiani et al. [12] has already proven smartphone-based crowdsourcing can be a viable strategy for measure-
ments by deploying a traceroute related Android application inside a wide academic and research network.
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TCP Port Service Cellular WiFi
21 FTP 3 0
25 SMTP 1 0
80 HTTP 20 7
443 HTTPS 6 0
5060 SIP 1 2
10000 - 1 0

Table 6: Number of networks in which TCP is proxied by port.

responsive during all 6 campaigns on ports 80 and 443. 2.4% of all hops were responsive
during at least the first two campaigns, then disappeared. 0.75% disappeared in the same way,
but then re-appeared for at least on campaign. 0.75% of all hops disappeared and re-appeared
more than once. 1.9% of all nodes were not responsive during the first campaign, but appeared
later and stayed responsive until the end. 2.4% only responded during one campaigns out of 6.

We analyzed the Autonomous Systems of the responsive IP addresses and found that out
of the 2,978 different observed ASs, 98.2% (2,924) of them were responsive (we received
at least one packet from one address parts of this AS) during all campaigns. Seven ASes
disappeared after at least two consecutive campaigns and 11 appeared between campaigns,
while 19 disappeared to re-appear later. Seven other ASes were only responsive during one
single campaign. One AS was only responsive to probes on port 80, and one to probes on port
443.

3.5.2.2 Detecting Proxies with AndroidTracebox

Table 6 the number of networks, for both rooted and unrooted devices, in which TCP ports
are proxied (see Sec. 2.2.1.2 to see how we detect the presence of a proxy). We did not
test all possible ports but, rather, focus on some well known ones (FTP, STMP, HTTP) and a
unreserved one (10000). We observe, unsurprisingly from Table 6 that HTTP traffic is the most
proxied one.

We have observed interesting behaviors between the proxy and the packet actual destination.
For instance, we were able to detect TCP coalescing between the proxy and the server by
sending multiple probes with only 1 byte of payload, the server receiving a single packet with
all those bytes as payload. We were also able to detect that different TCP options were set
between the pair (client, proxy) and the pair (proxy, server). This is done as follows: the server
sends a SYN+ACK with no timestamp option but the client receives the SYN+ACK with timestamp

option. As a consequence, the client sends back payload packet with timestamp option en-
abled. But every packet received on the server side has no timestamp option. It is like there is
a middlebox somewhere in the path adding timestamp option on the SYN+ACK packet and, then,
clearing the option on every client payload packet. Another explanation would be the connec-
tion being split in two parts: the client → proxy part (with the timestamp option enabled) and
the proxy→ server part (not considering the timestamp option). The same behavior happened
with the TCP window-scale option.

Weaver et al. [32] detect HTTP proxies from modifications on HTTP request / response. Al-
though we focus on transport proxies, we were able to detect one middlebox adding HTTP
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network connection % probes sent
IP UDP TCP

wifi 0.0 18.09 36.14
cellular 0.0 13.62 25.81

Table 7: NAT detection feasibility

headers without being proxied (meaning it did not change the TTL).

3.5.2.3 Detecting NATs with AndroidTracebox

Table 7 shows the feasibility of our mechanism to detect NATs. TCP or UDP checksum errors
are more common than IP (IP checksum is more likely to be corrected even in quoted packets).

Wang et al. [31] assume the presence of NAT by looking at the client (i.e., phone) address: if it
belongs to a reserved range, it means that there is a NAT. This is underestimating NAT presence
as we discovered NATs even when client address is a Public IP address. Our technique is thus
complementary to Wang et al. and we plan further measurement studies to achieve more
comprehensive results.

3.6 NAT Revelio Deployment

3.6.1 Measurement Setup

The NAT Revelio methodology enables us to determine from within home networks the type
of upstream network address translation, namely NAT at the home gateway (customer-grade
NAT) or NAT in the ISP (Carrier Grade NAT).

With the help of a large UK ISP and a large Italian ISP, we tested NAT Revelio on a controlled
set of 30 operational DSL accesses, 2 of which connected behind a trial CGN implementation
in the same ISP. NAT Revelio accurately detected the upstream NAT configuration of all 30
connections.

We further deployed the NAT Revelio test suite on two hardware-based large-scale measure-
ment platforms in Europe (RIPE Atlas) and the United States (FCC-MBA SamKnows), which
allowed us to instrument 5,121 measurement vantage points in over 60 different ISPs world-
wide. We scheduled the NAT Revelio client to run over 20 times on each probe during March
2016 for the FCC-MBA platform and during May 2016 in the RIPE Atlas platform. The data we
collected from the probes in each run of NAT Revelio are the following: the Globally Routable
Address (GRA), the mapped port number, traceroute results to the GRA, traceroute results to
a fixed target address (with 21 different packet sizes), UPnP query result to retrieve the IP ad-
dress on the external interface of the device to which the probes connect (only for SamKnows
- SK probes).

In total, we collected data from 5,121 probes in 64 ISPs with an average of 20 repetitions7 per

7In the FCC-MBA platform, in order not to interfere with normal user Internet activity, the probes perform cross-
traffic sensing and run the tests we schedule only when they detect no end-user traffic. Thus, the number of NAT
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probe which resulted in over 2 million traceroutes. The tested ISPs include 42 DSL providers,
16 cable providers, 4 ISPs that offer fiber to the home Internet connectivity and 2 satellite
providers.

3.6.2 Initial Results

As a function of the upstream NAT configuration, NAT Revelio classifies each probe into one
of the following cases:

1. inconclusive (cases where NAT Revelio was unable to draw any conclusion due to in-
complete or inconsistent results),

2. no home NAT (i.e., the probe where NAT Revelio runs is directly connected to the public
Internet),

3. simple home NAT (the CPE performs the GRA-NAT),

4. Carrier Grade NAT (the GRA-NAT is outside the home network, in the ISP’s network)

We present the aggregate results of the inferred upstream NAT configuration in Table 8.

Inconclusive. For 1,276 probes (307 SK probes and 969 Atlas probes), NAT Revelio gave
inconclusive results either because none of the tests could run on the probe or because we
did not obtain enough information to properly interpret the results we were able to collect. Our
approach is conservative and tags as inconclusive the case of mixed responses from different
tests. For example, traceroute limitations and ICMP traffic being filtered along the path to the
external target server hamper our capacity to identify the access link. Without knowing the
location of the access link, when the end-user deploys several levels of NAT in the home, we
cannot draw conclusions regarding the presence of NAT in the ISP. These probes account for
approximately 24% of the total, (12% of the SK probes and 36% of the Atlas probes). We
discard these cases for further analysis.

No home NAT. NAT Revelio found that in 299 different cases (85 in SK probes and 214 Atlas
probes), the NAT Revelio client was running on a probe configured with a public IP address
that was also the GRA. These probes were operating in the public Internet, which implies that
the connections were not connected behind a NAT solution. In all these cases, the traceroute
to the GRA test also confirmed the lack of a NAT solution in the corresponding ISPs.

Simple home NAT. Out of the rest, for 3,454 probes (2,009 SK probes and 1,445 Atlas probes)
NAT Revelio established the presence of simple home NAT and excluded the possibility of
further NAT in the ISP. NAT Revelio reports the simple home NAT configuration (and, thus, the
lack of NAT in the ISP for the respective connection) when at least one of the traceroute to GRA
and invoking UPnP actions tests establish that the home gateway is performing the GRA-NAT.
In the case of the UPnP test, for 1,300 SK probes the address retrieved through UPnP from the
CPE matched the GRA, concluding that the CPE was the GRA-NAT. For 815 SK probes, the
NAT Revelio client was unable to communicate with the CPE through UPnP, either because
the CPE did not support UPnP or because the SK probe was not directly connected to the CPE.
In the case of the traceroute to the GRA test, for 2,965 probes (1,520 SK probes and 1,445
Atlas probes) NAT Revelio located the GRA-NAT before the access link, concluding that the

Revelio repetitions differs for various measurement vantage points.
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ISP Name CC Tech. # of probes Inconclusive Simple Home NAT Carrier Grade NAT Confirmed

1 (Undisclosed ISP) US Sat 76 0 0 76 Yes

2 (Kabel Deutschland) DE Cable 49 27 14 8 Partially

3 (Fastweb) IT Fiber 26 14 8 4 Yes

4 (OTE) GR DSL 21 5 14 2 No Reply

5 (Liberty Global) NL Cable 280 133 146 1 Yes

6 (Zen) UK DSL 32 11 20 1 No Reply

Table 8: NAT Revelio Results. ISPs with at least one probe with positive NAT Revelio result.
We report the Country Code (CC), the access technology (Tech.), the total number of probes
tested (# of probes), the number of probes for which NAT Revelio gave inconclusive results
(Inconclusive), the number of probes NAT Revelio tested negative (Simple Home NAT), the
number of probes NAT Revelio tested as positive (Carrier Grade NAT) and the current status
of the confirmation from the ISP with positive NAT Revelio results (Confirmed). For the latter,
we mark this field with Yes if the ISP confirmed the NAT Revelio results, Partially if the ISP
confirmed they use CGN but did not confirm the specific accesses tested, No Reply if we did
not get any feedback from the ISP.

CPE was also the GRA-NAT. As a interesting data point, using pathchar to the GRA test NAT
Revelio purged 165 of cases where the CPE replied as being two different hops, creating false
positives. In particular, NAT Revelio detected this behavior in one single ISP for 78 out of 228
probes.

Carrier Grade NAT. For 92 probes in 6 ISPs (76 SK probes in 1 ISP and 16 Atlas probes in
5 ISPs) NAT Revelio detected the presence of CGN technology in the ISP’s network. Table 8
details the number of probes that tested positive for CGN per ISP8. We identified one satellite
provider in the U.S. where all probes tested positive for CGN. For the rest of the ISPs, we
detected a mix of some probes that tested positive for CGN and others that did not. Overall,
about 2% of the probes tested positive for CGN. About 10% of the ISPs we tested hosted
at least one probe that tested positive for CGN. Of these latter ones, only one ISP had a
widespread deployment of CGN, while the other ISPs presented a few scattered probes that
tested positive, hinting at a localized deployment, e.g., possibly for trials or suggesting a specific
service.

We validated both the positive and negative results at the IP level through different means,
including direct contacts with the involved ISPs or, in one case, using the WHOIS database
information. We managed to get several positive and negative confirmations. In particular, for
ISP#1 from Table 8 – the satellite provider in the US for which all probes tested positive – the
operator confirmed that its normal configuration includes performing the NAT function in the
ISP network and that all the 76 connections that tested positive were indeed behind a CGN.
ISP#3 (Fastweb) confirmed both the positive and the negative NAT Revelio results. For ISP#5
(Liberty Global) from Table 8, the GRA associated with the probe is actually tagged in the
WHOIS database (in the Organization field) as CGNAT (the other 279 probes in the same ISP
did not have a GRA in the subnet marked as CGN). ISP#2 (Kabel Deutschland) from Table 8

8We only disclose the names of the ISPs we tested using the RIPE Atlas platform. We are currently pending the
approval of the FCC for disclosing the names of the ISPs we tested with the FCC-MBA testbed.
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confirmed that it is using CGN in its network. However, we did not obtain explicit confirmation
that the exact accesses we detected as positive are actually behind a CGN, which is why we
marked it as a partial confirmation. As for the negative results, we obtained validation from
4 ISPs for which all probes tested negative for upstream CGN in the ISP. We mention that
(confirmed) negative results from NAT Revelio testing do not preclude the existence of CGN
technology in the corresponding networks.
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4 Conclusion

Our initial measurements indicate some guidance for the design of the MAMI Middlebox Co-
operation Protocol (MCP) to be elaborated in future deliverable D3.2. First, measurements
with copycat indicate that there is no widespread differential treatment of UDP and TCP based
solely on protocol number, so using UDP as a substrate protocol to allow userspace imple-
mentation of MCP, as well as for port numbers for NAT binding, is a fundamentally sound
architectural choice. Measurements with NAT Revelio and tracebox, showing the prevalence
of carrier grade NAT and standard NATs, further confirm the need for a NAT-binding shim layer.
However, measurements with Atlas, showing access-network-linked blockage of all UDP traffic
on around 3% of Internet access networks, indicate that the Flexible Transport Layer (FTL) will
require a fallback to TCP, TLS over TCP, or even HTTPS on networks with impaired connectivity.

Measurements taken with tracebox (both the standard and Android version) will also feed into
middlebox classification work, to appear in future deliverable D2.1.

The next steps for the measurement work package include further synthesis of these mea-
surement results using the Path Transparency Observatory, to be detailed in future deliverable
D1.2, as well as scaling out to more diverse paths, larger sets of vantage points, and more
frequent measurement to detect trends and provide information for middlebox behavior classifi-
cation efforts. Path and vantage point diversity will be provided in part by measurements taken
on the MONROE testbed. Measurement frequency will be improved by increasing automation
of measurement campaigns. We have already begun the automation of ECN impairment mea-
surements to generate finer trendlines in ECN deployment and the removal of ECN impairments
from the Internet.

PATHspider development continues, as well. Plugins to be built in the coming year include
generic TCP options testing, Stream Control Transmission Protocol (SCTP) [23], and Multipath
TCP [14] usability and connectivity. SCTP connectivity tests will examine a fundamental as-
sumption behind the MCP’s design: that UDP is necessary as an encapsulation because new
protocols do not deploy over IP. TCP options and MPTCP tests will round out examination of
impairment of current proposed evolutions of the transport layer.

copycat development also continues. In the following months, we plan to make copycat more
generic so that it would be able to compare any two transport protocols (not only TCP vs. TCP-
inside-UDP), not only based on the protocol framing and potential modifications thereof but
also evaluating QoS characteristics.

There are also opportunities to integrate multiple tools beyond the Observatory, e.g., integration
between PATHspider and tracebox to allow the latter’s measurement to localize interference
detected by the former.
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